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ABSTRACT
In recommendation scenarios, similarity measures play a funda-
mental role in memory-based nearest neighbors approaches. In
fact, they recommend items to a user based on the similarity of
either items or users in a neighborhood. In this paper, we argue
that similarity between users or items, although it keeps leading
importance in computing recommendations, should be paired with
a value of dissimilarity (computed not just as the complement of
the similarity one). We formally modeled and injected this notion
in some of the most used similarity measures and evaluated our
approach in a recommendation scenario showing its effectiveness
with respect to accuracy and diversity results on three different
datasets.
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1 INTRODUCTION
Neighborhood-based approaches have been the first family of algo-
rithms developed for collaborative filtering recommender systems.
They identify similar users or items, and they provide users with
a list of items they could be interested in by exploiting the degree
of similarity. Though there have been around for many years, it
has been shown that neighborhood-based approaches may perform
better than latent model-based methods to solve the top-N recom-
mendation problem [3, 12, 16, 20]. In the top-N recommendation
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task, the focus is on providing an accurate ranked list rather than
minimizing the rating prediction error. Among neighborhood-based
methods the best-known are user-kNN, item-kNN and Sparse LIn-
ear Methods (SLIM) [20]. User-based and item-based schemes have
proven to be effective in different settings although they use the
same logic behind the scenes. In details item-kNN and SLIM (which
uses an item-based scheme) have shown to outperform user-kNN
to solve the top-N recommendation problem [10] and several algo-
rithms have been proposed in the literature to enhance neighbors
models like GLSLIM [10] andWeighted kNN-GRU4REC [15], taking
advantage of personalized models and recurrent neural networks.
Moreover, we also have approaches focusing on the injection of
time in neighborhood models [6] and modeling similarities by di-
rectly optimizing the pair-wise preferences error [23]. All in all,
under the hood, what makes neighborhood-based methods work is
a similarity measure.

Several similarity measures have been proposed and used ex-
tensively such as Jaccard [13][22] and Tanimoto [11] coefficients,
Cosine Vector similarity [1, 4, 7], Pearson Correlation [14], Con-
strained Pearson correlation [25], Adjusted Cosine similarity [24],
Mean Squared Difference similarity [25], Spearman Rank Correla-
tion [18], Frequency-Weighted Pearson Correlation [8], Target item
weighted Pearson Correlation [5]. In the vast majority of cases, all
these similarity measures are based on two assumptions:

(1) the correlation between i and j is the same correlation be-
tween j and i (symmetry of similarity);

(2) the correlation between two entities only captures howmuch
they are similar to each other without taking into account
their degree of dissimilarity.

To the best of our knowledge, a few works have been proposed in
the past years related to asymmetric similarity, and they are mainly
designed for a user-based scheme. Dissimilarity was first suggested
in 1999 [28] when Varian described the value of introducing diver-
sity into search results. An Asymmetric User Similarity has been
proposed in [19] where the authors underline that a similarity mea-
sure should distinguish between a user with a rich profile and a cold
user. Thus, given two usersu andv , they slightly modify the Jaccard
index in order to consider exclusively the number of ratings of the
current user (instead of the overall number of both users). In HYBR-
Tyco [17] the similarity proposed by Millan [19] is combined with
the Sørensen index [26]. HYBRTyco [17] is a hybrid recommender
system which combines matrix factorization with an asymmetric
similarity model to realize a typicality-based collaborative filtering
recommender system. The same approach is exploited in another
asymmetric user similarity model [21] to feed a user-user similarity
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matrix that is then completed using a matrix factorization algo-
rithm. Additionally, both of them provide an extension for the latter
similarity measure based on explicit numerical feedbacks (ratings).
Despite previous works are focused on the user-based scheme, we
already underlined that item-kNN shows excellent performance in
top-N recommendation task. Moreover, when the number of users
exceeds the number of items, as in most of the cases, item-based
recommendation approaches require much less memory and time
to compute the similarity weights than user-based ones, making
them more scalable. Due to these reasons, both approaches have
been considered in this work.

In this work, we investigate the effect on recommendation accu-
racywhenwe go beyond the above two assumptions and define (and
include) the concepts of dissimilarity and asymmetry in similarity
measures. In our proposal, we start from a probabilistic interpreta-
tion of similarity to define symmetric and asymmetric dissimilari-
ties. The dissimilarity measures are then combined with traditional
similarity values using additive and multiplicative strategies. The
experimental evaluation shows that our approach outperforms the
non-dissimilarity-aware counterparts improving the accuracy of
results or diversity or both.

The rest of the paper is organized as follows: Section 2 presents
the motivation behind our work and the proposed approach. Sec-
tion 3 presents the evaluation protocol, metrics, datasets and perfor-
mance of themethod. Finally, in Section 4 concluding considerations
are provided.
2 DISSIMILARITY IN RECOMMENDATION
2.1 Motivation
The main idea behind our proposal is that symmetric similarity
may not be sufficient to capture subtle interactions between items.
We assume that representing the similarity through traditional
measures can lead to imperfect results as important information
might not be properly considered. Let us consider some examples
in an item-kNN scenario. Suppose we are dealing with a dataset
containing rating data from the book domain on the following
books:
Title Short name Author # Votes
A Game of Thrones GoT G. R. R. Martin 100
A Dance with Dragons DwD G. R. R. Martin 10
Shroud of Eternity SoE T. Goodkind 120
By looking at the previous data, we see that both A Game of

Thrones and A Dance with Dragons belong to the same saga A
song of ice and fire and they are, respectively, the first and the fifth
volume. Shroud of Eternity is the second volume of Nicci Chronicles’
saga. We may assume that all the users who rated DwD also rated
GoT, i.e., UDwD ⊆ UGoT . Analogously, since the topic of the book
is mostly the same, we may assume that a number of readers of
SoE also voted GoT, USoE ∩UGoT , ∅. Suppose now that we have
USoE ∩ UGoT = 20 and UDwD ∩ UGoT = 10. If we compute the
Jaccard similarity between the pairs SoE, GoT and DwD, GoT we
have

JS(DwD,GoT ) =
|UDwD ∩UGoT |

|UDwD ∪UGoT |
= 0.1

JS(SoE,GoT ) =
|USoE ∩UGoT |

|USoE ∪UGoT |
= 0.1

In our opinion, much relevant information has been lost in this
simple example. The scenario is shown graphically in Figure 1.

(a) UDwD is en-
tirely contained
in UGoT

(b) UGoT , is partially over-
lapped with USoE

Figure 1: Representation of the motivation example
It is clear that UDwD is a proper subset of UGoT and, on the

contrary, there are many users inUSoE that have not experienced
GoT. This information is mostly lost in the computation of the
similarity values even though a piece of this information is retained
in the denominator of the Jaccard coefficient through the overall
value ofUGoT ∪UDwD andUGoT ∪USoE .

In order to clarify the reason why we do not consider this re-
maining information sufficient, let us consider a more formal de-
scription of the scenario. Many similarity measures (like Jaccard
in the previous example) mainly rely on a value that denotes the
similarity between two items normalized by their overall weight.
This can be represented as a probability. Let I(u) = {⟨i, rui ⟩ |

u rated i with rui } be the user profile containing the pairs item-
rating and U(i) = {⟨u, rui ⟩ | ⟨i, rui ⟩ ∈ I(u)} be the set of users
that experienced i . If we consider Jaccard similarity we see it repre-
sents the following probability:

p JS (i, j) = p(⟨u, rui ⟩ ∈ U(i) ∧ ⟨u, ruj ⟩ ∈ U(j)) (1)

which can be read as the probability that u experienced both i and
j. Under a probabilistic lens, we may define dissimilarity measures
with two different probabilities:

• the probability that a generic user u experienced the item i
but never experienced the item j

• the probability that a generic user u experienced the item j
but never experienced the item i

Since we are introducing an asymmetric behavior in computing
the similarity between i and i as well as between j and i , we see
that the two probabilities have a different role while computing a
similarity measure.

In a classical memory-based Item-kNN, sim(i, j) is used to com-
pare i to different j to find out which js are the most similar to i . In
practical terms, we are interested in how much j is similar to i . If
we focus on Figure 1a, we realize that DwD is more similar to GoT
than the opposite situation. The reason behind this behavior is not
directly related to the size of the involved sets but it depends on the
probability that a user who experienced GoT did not experience
DwD.

Though some interesting asymmetric similarities have been pro-
posed in the last years [17, 21], to our knowledge, no one focused on
this probability that represents a negative asymmetric dissimilarity.

2.2 Metrics
In this work, we propose a general asymmetric similarity model in
which items i, j similarities are computed by taking into account the
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probability that users that experienced j never experienced i . The
idea behind our work is preserving the core meaning of a specific
similarity, applying a corrective factor encoding the dissimilarity
we mentioned before.

We introduced this correction into two binary symmetric simi-
larities: Jaccard and Sørensen index, and in the asymmetric variant
to the Jaccard coefficient proposed in [19]. We tested this correction
both as an additive and as a multiplicative factor.

For the sake of completeness, we reintroduce Jaccard coefficient
similarity (JS) that, for a memory-based item-kNN model can be
expressed as:

JS(i, j) =
|U(i) ∩ U(j)|

|U(i) ∪ U(j)|
(2)

The probability that users who experienced j never experienced
i can be modeled as the complementary probability of Equation (1)
w.r.t. U(i) over |U(i) ∪ U(j)|. This probability, we name Jaccard
Asymmetric Dissimilarity(JAD) can be formulated as follows:

JAD(i, j) =
|U(j)| − |U(i) ∩ U(j)|

|U(i) ∪ U(j)|
(3)

Again, Equation (3) can be seen in terms of probability as

p JAD (i, j) = p(⟨u, ruj ⟩ ∈ U(j)) − p JS (i, j)

We now propose to modify the original similarity by injecting
the former negative correction weighted with a parameter λ that
can be easily customized. The overall similarity, Additive Adjusted
Jaccard (AAJ), is then formulated as:

AAJ (i, j) = JS(i, j) − λ · JAD(i, j) (4)

where λ is a parameter that could depend on many factors such
as the number of users and items in the dataset and the intensity
of interactions between them.

Recalling that the overall formula should represent a degree of
similarity between the two different items we defined the Multi-
plicative Adjusted Jaccard as the product of Jaccard similarity with
the inverse of Jaccard Asymmetric Dissimilarity (IJAD). In other
words, we use 1

p JAD (i, j) as a corrective factor for p
JS (i, j). We then

define the Multiplicative Adjusted Jaccard (MAJ) as:

MAJ (i, j) =
JS(i, j)

JAD(i, j)
= JS(i, j) · I JAD(i, j) (5)

In the multiplicative variant, in order to avoid division by zero
the minimum value for JAD is set to 1

|U(i)∪U(j) | . As mentioned
in Section 2.1 a symmetric variant of Jaccard coefficient (named
Jaccard Symmetric Dissimilarity (JSD)) can be used composing Equa-
tion (3) with the probability that a user u experienced the item i
but never experienced the item j:

JSD(i, j) =
(|U(j)| − |U(i) ∩ U(j)|) + (|U(i)| − |U(i) ∩ U(j)|)

|U(i) ∪ U(j)|

=
|U(i)| + |U(j)| − 2 · |U(i) ∩ U(j)|

|U(i) ∪ U(j)|

leading to the corresponding probability

p JSD (i, j) = p JAD (i, j) + p JAD (j, i)

Thus the Symmetric Additive Adjusted Jaccard (S-AAJ) and Sym-
metric Multiplicative Adjusted Jaccard (S-MAJ) can be defined as
follows:

S-AAJ(i, j) = JS(i, j) − λ · JSD(i, j)

S-MAJ(i,j) =
JS(i, j)

JSD(i, j)

In order to test our idea, we applied all the variants previously
introduced for Jaccard similarity to two popular similaritymeasures:
Asymmetric Jaccard Similarity (AJS) and Sørensen coefficient (SOR).
All the derived variants are represented, respectively, in Table 1
and Table 2.

Table 1: Asymmetric Jaccard considered variants.
Short name Extended Formula
AJS(i,j) Asymm. Jaccard |U(i )∩U(j )|

|U(i )|Similarity
AJD(i,j) Asymm. Jaccard |U(j )|−|U(i )∩U(j )|

|U(i )|Dissimilarity
AAAJ(i,j) Additive Adjusted

AJS (i, j) − λ · AJD(i, j)Asymm. Jaccard
MAAJ(i,j) Multiplicative Adjus.

AJS (i, j) · I JAD(i, j)Asymm. Jaccard
S-AAAJ(i,j) Symmetric AAAJ

AJS (i, j) − λ ·
|U(i )|+|U(j )|−2·|U(i )∩U(j )|

|U(i )|

S-MAAJ(i,j) Symmetric MAAJ AJS (i, j) · I JSD(i, j)

Table 2: Sørensen similarity considered variants.
Short name Extended Formula
SOR(i,j) Sørensen Similarity |U(i )∩U(j )|

|U(i )|+|U(j )|

ASD(i,j) Asymm. Sørensen |U(j )|−|U(i )∩U(j )|
|U(i )|+|U(j )|Dissimilarity

AAS(i,j) Additive Adjusted
SOR(i, j) − λASD(i, j)Assym Sørensen

MAS(i,j) Multiplicative Adjusted
SOR(i, j) · I JAD(i, j)Asymm Sørensen

S-AAS(i,j) Symmetric AAS
SOR(i, j) − λ |U(i )|+|U(j )|−2·|U(i )∩U(j )|

|U(i )|+|U(j )|

S-MAS(i,j) Symmetric MAS SOR(i, j) · I JSD(i, j)

All the above metrics have been introduced having in mind an
item-kNN approach but, without loss of generality, they can be
applied to user-kNN model as well.

3 EXPERIMENTAL EVALUATION
The experimental evaluation has been carried out on three publicly
available datasets and with different values of k and λ.
Datasets. We evaluated the effectiveness of our approach on the
three datasets shown in Table 3 belonging to different domains
(Music, Books, and Movies). The Last.fm dataset [9] corresponds
to transactions with Last.fm online music system released in Het-
Rec 20111. It contains social networking, tagging, and music artist
listening information from a set of 2K users. LibraryThing rep-
resents books ratings collected in the LibraryThing community
website. It contains social networking, tagging, and rating infor-
mation on a [1..10] scale. Yahoo!Movies (Yahoo! Webscope dataset
ydata-ymovies-user-movie-ratings-content-v1_0)2 contains movies
1http://ir.ii.uam.es/hetrec2011/
2http://research.yahoo.com/Academic_Relations
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ratings generated by Yahoo! Movies up to November 2003. It pro-
vides content, demographic, rating information, and mappings to
MovieLens and EachMovie datasets.

Table 3: Datasets statistics.
Dataset #Users #Items #Transactions Sparsity
Yahoo! Movies 7642 11,916 221,367 99.76%
LibraryThing 7279 37,232 2,056,487 99.24%
Last FM 1850 11,247 59,071 99.72%

Columns corresponding to #Users, #Items and #Transactions show the number of users, number of
items and number of transactions, respectively, in each dataset. The last column shows the
sparsity of the dataset.

Evaluation Protocol and Experimental Setting with Param-
eters tuning. The evaluation protocol we adopted in our experi-
ments is all unrated items [27]. With this protocol, the recommen-
dation list is computed from a candidate list given by the cartesian
product between users and items minus the items each user ex-
perimented in the training set. We performed a temporal 64-16-20
hold-out split (when temporal information is available) retaining
the last 20% of ratings as test set and 16% as validation set. We
measured the performance by computing Precision@N (Prec@N )
for top-N recommendation lists as accuracy metric. Precision has
been computed on a per-user basis, and the returned results have
been averaged. As Precision needs relevant items to be computed,
we set the relevance threshold to 8 over 10 for LibraryThing and
Yahoo!Movies, and to 0 for Last.fm since in this latter no rat-
ings are provided but the number of user-item transactions. We
measured Diversity through catalog coverage (aggregate diversity
in top-N list). The catalog coverage, also called diversity-in-top-N
(D@N ) [2], is measured by computing the overall number of differ-
ent items recommended within the complete recommendation list.
It represents the propensity of a system to recommend always the
same items.
Baselines. We compared our approaches in both User-kNN and
Item-kNN settings. The former finds the k-nearest user neighbors
based on a similarity function and then exploits them to predict a
score for each user-item pair. The latter is the item-based version of
the k-nearest neighbors algorithm that uses the k-nearest items to
compute the predictions. For both schemes we used the validation
set to find the optimal hyper-parameters. However, we are not inter-
ested in the algorithm itself but on the similarity measures that are
used to compute neighbors and predictions. As baseline to compare
with, we used both symmetric and asymmetric measures, namely,
Jaccard (JS) and Sorensen (SOR) (for symmetric measures) and
asymmetric Jaccard (AJS) and asymmetric Jaccard weighted
with the Sorensen Index (ASOR) [17] (for asymmetric measures).
For all the similarities that make use of λ we evaluated them vary-
ing λ in {0.2, 0.4, 0.6, 0.8} whereas we considered a number of
Neiдhbors varying in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We ran
the algorithms with all possible combinations, and we selected the
best performing ones with respect to Precision@N. The best pa-
rameters for user-based and item-based schemes are represented,
respectively in Table 4 and 5.
Performance of the proposedmethods. Results in Table 6 show
the performance of all algorithms with a user-based scheme. Con-
cerning accuracy, it is clear that both asymmetric and symmetric
multiplicative variants are the best-performing ones. MAJ and S-
MAJ achieve good performance, outperforming JS. The same trend

is shown between MAAJ, S-MAAJ, and AJS. The same behavior can
be observed in the Sorensen algorithms block, in which MAS out-
performs SOR in LibraryThing and Yahoo!Movies datasets with
the only exception of Last.fm datasets. Concerning Diversity the
proposed variants constantly outperform the base variants. It is
worth to note that AAJ and AAAJ algorithms that can recommend
much more items with a little loss of Precision. Table 7 shows the
results for the item-based scheme. Performance is much different
here, and we can note that the multiplicative asymmetric variants
have a worse behavior. However, the Last.fm results show that
the additive variants outperform the base ones. We can observe the
same behavior also in thewhole asymmetric Jaccard similarity block
for all the three datasets. The Jaccard similarity and the Sørensen
block, for LibraryThing and Yahoo!Movies show no clear cham-
pion concerning the performance of JS/SOR and S-MAJ/S-MAS that
result very similar. This behavior may be due to the tuning results
that are very close to each other, and this probably prevented us
from selecting the best parameters.
Experimental Setting with a fixed number of neighbors. In
tables 4 and 5 we see that best values of λ and k are different depend-
ing on the adopted approach. Hence, we tested also the different
algorithms with a fixed number of neighbors. In other words, we
checked: How would the different algorithms perform if, i.e., we fix
the number of neighbors? Once again we employed the all unrated
items evaluation protocol to evaluate the methods. We performed a
temporal 80-20 hold-out split retaining the last 20% of ratings as
test set using temporal information when available.
Baselines. Also in this experiment, we compared our approaches
with both User-kNN and Item-kNN settings considering, for all the
algorithms, the number of neighbors fixed and set to k = 80. For
all the similarities that make use of λ we evaluated them varying
λ in 0.2,0.4,0.6,0.8. In Tables 8 and 9 we show the best results we
obtained3. The best values regarding Precision and Aggregate Di-
versity are highlighted in bold. We computed significance tests for
precision results, and we found they are statistically significant at
the 0.05 level w.r.t. their respective baselines.
Performance of the proposedmethods. Results in Table 8 show
that our approach always outperforms baseline variants in the
User-kNN scheme. In details additive asymmetric similarity and
multiplicative asymmetric similarity significantly perform better
than JS, SOR and ASOR for all three dataset. Among these two vari-
ants of similarity, the multiplicative variant is the best-performing
one. Quite interestingly, modifying AJS, which is asymmetric in
its inner nature with our asymmetric dissimilarity factor leads to
an improvement irrespective of the considered dataset. It is worth
noticing that, other than the accuracy improvements, aggregate
diversity also increases due to the dissimilarity injection. In details,
the asymmetric additive variant achieves the best results and triples
catalog coverage values for LibraryThing and Yahoo!Movies.

Table 9 shows Precision and Catalog Coverage results for an
item-based scheme. Obtained results are quite interesting for many
reasons. First of all, it is clear that the same similarities can lead to

3The complete results are publicly available at https://github.com/sisinflab/The-
importance-of-being-dissimilar-in-Recommendation.
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Table 4: Best parameters for User-kNN scheme
Precision - P@10

JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
Datasets k λ k k λ k k k k λ k k λ k k k λ k k λ k P@10
LibraryThing 50 0.2 100 50 0.2 30 100 90 50 0.2 50 50 0.2 30 100 20 0.2 100 40 0.2 50 20
Yahoo 90 0.4 100 40 0.2 100 90 100 90 0.2 40 40 0.2 100 90 10 0.6 80 30 0.2 100 70
Last FM 90 0.2 100 100 0.2 50 90 90 100 0.2 100 100 0.2 50 90 30 0.2 100 100 0.2 50 20

Table 5: Best parameters for Item-kNN scheme
Precision - P@10

JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
Datasets k λ k k λ k k k k λ k k λ k k k λ k k λ k P@10
LibraryThing 10 0.2 20 20 0.4 10 20 70 10 0.2 20 20 0.4 10 20 60 0.2 10 10 0.2 10 60
Yahoo 10 0.2 20 10 0.2 10 10 10 10 0.2 10 10 0.2 10 10 20 0.2 20 10 0.2 10 10
Last FM 10 0.2 20 30 0.2 20 10 10 10 0.2 30 30 0.2 20 10 10 0.2 40 20 0.2 70 10

Table 6: Comparison in terms of Precision and Aggregate Diversity for User-kNN scheme with best parameters
Precision - P@10

Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 0.03025 0.04005 0.04675 0.00416 0.03102 0.03565 0.03031 0.04687 0.04687 0.00416 0.03088 0.03768 0.03871 0.04670 0.00429 0.03796
Yahoo 0.04165 0.05196 0.06284 0.03892 0.04149 0.04261 0.04151 0.06354 0.06354 0.03917 0.04170 0.05465 0.04234 0.06176 0.03705 0.05207
Last FM 0.02704 0.02163 0.02532 0.00601 0.02773 0.02927 0.02747 0.02532 0.02532 0.00609 0.02695 0.02901 0.02120 0.03039 0.00592 0.03107

Aggregate Diversity - D@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 2735 7330 3093 3341 1953 2687 2660 2999 2999 3337 1879 2519 7443 3037 3337 2834
Yahoo 698 2087 1126 2181 796 882 662 1074 1074 2179 732 974 1903 1147 2177 580
Last FM 1136 1665 1485 1156 1203 1283 1097 1446 1446 1154 1145 764 1748 889 1163 1025

Table 7: Comparison in terms of Precision and Aggregate Diversity for Item-kNN scheme with best parameters
Precision - P@10

Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 0.08180 0.07449 0.03189 0.06482 0.08048 0.07835 0.07949 0.02462 0.02462 0.06111 0.07894 0.04556 0.08748 0.02256 0.06293 0.06097
Yahoo 0.05105 0.04976 0.00272 0.04966 0.05187 0.05013 0.05043 0.00196 0.00196 0.04915 0.05141 0.01598 0.05031 0.00175 0.04842 0.02437
Last FM 0.02146 0.02549 0.00326 0.02489 0.02120 0.02052 0.02069 0.00275 0.00275 0.02403 0.02077 0.00876 0.02910 0.00240 0.02506 0.01373

Aggregate Diversity - D@10
Datasets JS AAJ MAJ S-AAJ S-MAJ ASOR SOR AAS MAS S-AAS S-MAS AJS AAAJ MAAJ S-AAAJ S-MAAJ
LibraryThing 11945 12338 22097 11654 11551 10521 11774 21365 21365 11447 11450 18604 12899 13042 13604 16018
Yahoo 3262 5159 4644 3466 3091 3539 3340 4742 4742 4351 3725 6864 3946 3645 4514 5565
Last FM 2867 4394 3884 2920 2763 3389 2917 3648 3654 3446 3341 5150 3680 3078 3429 4447

very different results depending on the adopted scheme. In partic-
ular, asymmetric Jaccard (AJS) performs very badly for the item-
kNN algorithm. Under the dissimilarities perspective, we have the
same behavior, and the multiplicative approach performs badly.
Quite surprisingly, the additive version can always outperform
the base variants. This suggests that adopting an additive strategy
for item-kNN may lead to better results. This may be due to the
wide number of items pairs without any common user. Focusing on
additive symmetric and asymmetric similarities we can note that
aggregate diversity results reflect the same improvements observed
in accuracy values. The only case that appears to behave differ-
ently is AAAJ that registered a catalog coverage lower than AJS.
This happens as we considered the best performing λ for precision.
In case of λ ∈ {0.4, 0.6} we obtain aggregate diversity values of
16, 205 and 18, 071, respectively, with precision results constantly
higher than AJS (0.09374 and 0.08820). We may observe another
interesting pattern on the Yahoo!Movies row: the symmetric ver-
sion outperforms the asymmetric one. This could be due to some
datasetś characteristic. By looking at the data in Table 3 we see that
the ratio of the number of items to the number of users is much
higher in LibraryThing and Last.fm (≈ 5 and ≈ 6) with respect
to Yahoo!Movies (≈ 1.5). This suggests that the more the ratio is,
the more is convenient to adopt an asymmetric scheme. However,
this consideration needs to be further investigated.

4 CONCLUSION AND FUTUREWORK
In this work, we propose a method to improve the performance
of neighborhood-based models, by capturing subtle interactions
between users and items, which cannot be appreciated using a
traditional similarity measure. We defined a dissimilarity measure,
that can be used combined with traditional user-based and item-
based schemes. The proposed approach takes into account the
single asymmetric components, leading to an improvement in both
precision and aggregate diversity results. We performed a com-
parative experimental evaluation using three well-known datasets,
varying the tuning parameter λ and k . Experiments show that our
approach outperforms competing algorithms, denoting the useful-
ness of incorporating symmetric and asymmetric dissimilarity in
neighborhood-based models. We are currently working on an ex-
tension of our idea that takes into account also user ratings and not
just set-based measures. As a further extension, we are also inter-
ested in making the approach even more personalized by weighting
dissimilarity with user-centered values of λ.
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