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ABSTRACT
In the last years, deep learning has shown to be a game-changing
technology in artificial intelligence thanks to the numerous suc-
cesses it reached in diverse application fields. Among others, the
use of deep learning for the recommendation problem, although
new, looks quite promising due to its positive performances in
terms of accuracy of recommendation results. In a recommendation
setting, in order to predict user ratings on unknown items a possi-
ble configuration of a deep neural network is that of autoencoders
tipically used to produce a lower dimensionality representation of
the original data.

In this paper we present KG-AUTOENCODER, an autoencoder
that bases the structure of its neural network on the semantics-
aware topology of a knowledge graph thus providing a label for
neurons in the hidden layer that are eventually used to build a
user profile and then compute recommendations. We show the
effectiveness of KG-AUTOENCODER in terms of accuracy, diversity
and novelty by comparing with state of the art recommendation
algorithms.

1 INTRODUCTION
Recommender systems (RS) have becoming pervasive tools we
experience in our everyday life. While browsing a catalog of items
RSs exploit users’ past preferences in order to suggest new items
they might be interested in. In a digital world where we, as users,
are overwhelmed by multiple possibilities and choices they result a
valid tool to help us in finding information that fits our need, tastes
and preferences. Many online services heavily rely on the usage
of a recommender systems to suggest new movies to watch, new
books to read or new songs to listen to.

Over the years, different strategies have been proposed to tackle
the recommendation problem; among them, collaborative filtering
(CF) has shown to be very effective in predicting the relevance of
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unrated items, especially if many data about users-items interac-
tions are available. CF approaches just use item ratings1 provided
by the users in a system to suggest, in a personalized way, new and
unknown items to interact with. Differently from CF RS, content-
based (CB) approaches exploit descriptive metadata in order to
find items which are similar to the ones already available in a user
profile and recommend them accordingly.

Many works [20, 23, 32] show that the recommendation quality
can be improved if both strategies are combined in a hybrid one [5].
Exploiting CBmethods requires getting information about the items
in order to model their corresponding features. In this direction,
Knowledge Graphs have been recently widely adopted to represent
items, compute their similarity and relatedness [10] as well as to
feed CB and hybrid recommendation engines [30]. The publication
and spread of freely available Knowledge Graphs in the form of
Linked Open Data datasets, such as DBpedia [1], has paved the way
to the development of knowledge-aware recommendation engines
in many application domains and, still, gives the possibility to easily
switch from a domain to another one by just feeding the system
with a different subset of the original graph.

Another technology that surely boosted the development of a
new generation of smarter and more accurate recommender sys-
tems is deep learning [6]. Starting from the basic notion of artifi-
cial neural net (ANN), several deep learning strategies have been
developed to address classical problems in artificial intelligence,
like image recognition or natural language processing. Among the
different configuration of a deep ANN, here we are interested in
autoencoders. Initially conceived for feature selection and dimen-
sionality reduction [44] they have been then used as generative
models of data [21].

In this paper we show how autoencoders technology can benefit
from the existence of a Knowledge Graph to create a representation
of a user profile that can be eventually exploited to predict ratings
for unknown items. The main intuition behind the approach is that
both ANN and Knowledge Graph expose a graph-based structure.
Hence, we may imagine to build the topology of the inner layers in
the ANN bymimicking that of a Knowledge Graph. We will see how
this idea can lead to an ANN whose nodes in the hidden layers have
an explicit label and semantics attached that can be further exploited
to represent user preferences. In fact, the topolgy of such a neural
network is built upon the semantic interconnections between items
and categories which exist in the adopted knowledge graph. Once

1Here, with ratings we refer to whatever user interaction, both implicit and explicit,
from which we can infer a like or dislike behavior.
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trained, the values obtained for each hidden neuron of the ANN
are interpreted as the relevance that the associated feature has for
the user.
The remainder of this paper is structured as follows: in the next
section we discuss related works on recommender systems exploit-
ing deep learning, knowledge graphs and Linked Open Data. Then,
the basic notions of the technologies we adopted are introduced
in Section 3. The proposed recommendation model is described in
Section 4 while in Section 5 we present the experimental setting
and evaluation. Conclusions and Future Work close the paper.

2 RELATEDWORK
Autoencoders and Deep Learning for RS. The adoption of deep
learning techniques is for sure one the main advances of the last
years in the field of recommender systems. In [47], the authors
propose the usage of a denosing autoencoder to perform a top-N
recommendation task. Denoising autoencoders, exploiting a cor-
rupted version of the input data, learn the latent knowledge behind
it; in the same way, the authors corrupt data about rated items in
order to improve users’ preferences thus learning and finding the
most interesting items for them. A collaborative filtering model
based on autoencoders is described in [39], in which the authors
develop both user-based and item-based autoencoders to tackle
the recommendation task. Stacked Denoising Autoencoders are
combined with collaborative filtering techniques in [42] where the
authors leverage autoencoders to get a smaller and non-linear rep-
resentation of the users-items interactions. This representation is
eventually used to feed a deep neural network which can alleviate
the cold-stat problem thanks to the integration of side informa-
tion. A hybrid recommender system is finally built. Another hybrid
approach is proposed in [12]: the aim is to address the sparsity
problem using deep learning techniques to model both users and
items exploiting side information. The representations so obtained
are then integrated in a collaborative model relying on matrix fac-
torization. Wang et al. [46] suggest to apply deep learning methods
on side information to reduce the sparsity of the ratings matrix in
collaborative approaches. In [45] the authors propose a deep learn-
ing approach to build a high-dimensional semantic space based on
the substitutability of items; then, a user-specific transformation is
learnt in order to get a ranking of items from such a space. Analysis
about the impact of deep learning on both recommendation quality
and system scalability are presented in [13], where the authors
first represent users and items through a rich feature set made on
different domains and then map them to a latent space. Finally, a
content-based recommender system is built.
Knowledge Graphs and Linked Open Data for RS. Several
works have been proposed exploiting side information coming
from knowledge graphs and Linked Open Data (LOD) to enhance
the performance of recommender systems. Most of them rely on
the usage of DBpedia as knowledge graph. In [18], for the very first
time, a LOD-based recommender system is proposed to alleviate
some of the major problems that affect collaborative techniques
mainly the high sparsity of the user-item matrix. The effectiveness
of such an approach seems to be confirmed by the large number
of methods that have been proposed afterwards. A detailed review

of LOD-based recommender systems is presented in [7]. By lever-
aging the knowledge encoded in DBpedia, it is possible to build
an accurate content-based recommender system [9] also in mobile
scenarios [33] or a multirelational graph for graph-based recom-
menders [11]. Even cross-domain recommendations [15] may be
easily provided, letting users get suggestions for items belonging
to different domains, such as movies and songs. Furthermore, the
exploitation of Linked Open Data helps to deal with limited content
analysis and cold-start problems: new relevant features can be in-
troduced to improve item representations [4, 38] or to cope with
the increasing data sparsity [27, 43].
It is worth noticing that leveraging knowledge graphs available as
Linked Open Data is also useful to improve the overall accuracy
of a recommender [26, 32] or to provide a good balance between
different recommendation objectives, such as accuracy, diversity
and novelty [20, 27, 31].
Further applications of DBpedia properties embrace some inter-
esting tasks like the generation of effective natural-language rec-
ommendation explanations [28] and the definition of semantic
similarity measures for providing more accurate recommendations
[23, 29, 35]. Some of the ideas presented in this work have been
originally presented in [2] where an analogous approach has been
adopted for the first time to tackle the cold start problem.

Vector SpaceModel (VSM) [37] is an established techniquewidely
used in the fields of information retrieval and information filter-
ing. Over the years, different approaches leveraging on the VSM
have been proposed in order to help users in their search for inter-
esting items. Recent works include novel strategies to enrich the
user profile modelled by VSM injecting knowledge coming from
ontological and semantics-aware data sources: in [14], the authors
analyze the impact of ontology and text mining techniques in such
a task, leveraging on the synonyms and the hypernyms of the terms
to compute each term’s weight as a linear combination of three
different kinds of TF-IDF values; the enhanced VSM [25] tries to
overcome a classical problem of the original VSM: it builds each
user profile only considering the associated positive preferences.
Therefore, the use of a negation operator is proposed, so that also
negative preferences can also be taken into account.

3 BACKGROUND TECHNOLOGIES
We now introduce and discuss the main technologies we have been
using to model our Knowledge Graph-aware autoencoder. We start
by describing the ideas behind autoencoders and their usage for
rating prediction in recommendation scenarios and then we give
a brief overview on knowledge graphs encoded as LOD with an
emphasis on DBpedia.

3.1 Autoencoders
An artificial neural network is a mathematical model used to learn
the relationships which underlie in a given set of data. Starting
from them, after a training phase, an ANN can be used to predict a
single value or a vector, for regression or classification tasks.
Basically, an ANN consists of a bunch of nodes, called neurons,
distributed among three different kinds of layers: the input layer,
one or more hidden layers and the output layer. Tipically, a neuron
of a layer is connected to all the neurons of the next layer, making
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the ANN a fully connected network. In Figure 1 we see a graphical
representation with an input vector xxx and an output vector yyy. In
this case we have only one single hidden layer but an ANN can
have, in principle, whatever number of hidden layers.
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Figure 1: A representation of a fully connected ANN.

Autoencoders are ANNs which try to set the ouput values equal to
the input ones, modelling an approximation of the identity function
yyy = f (xxx) = xxx . Roughly, they are forced to predict the same values
they are fed with. Therefore, the number of the output units and
the one of the input nodes is the same, i.e. |xxx | = |yyy |. The aim of
such a task is to obtain a new representation of the original data
based on the values of the hidden layers neurons. In fact, each of
these layers projects the input data in a new Euclidean space whose
dimensions depend on the number of the nodes in the hidden layer.
Autoencoders have an odd number h of hidden layers. The first half
is used to encode the input in the new feature space represented
by the middle layer while the second half is used to reconstruct the
encoded input in the original feature space. Generally, autoencoders
are exploited to get a smaller representation of the input data,
using the hidden layers as a bottleneck: it means that the number
of neurons decreases from the input data up to the middle layer,
in order to encode somehow the original data. Then, the values
obtained at the middle layer are used to reconstruct the input data
through a decoding operationwhich involves the next hidden layers:
the number of their nodes increases until the input dimensions are
reached. As a matter of fact, when we use an autoencoder, we
are not interested at its ouput, but at the encoded representation
it computes: in this way, we can leverage the implicit knowledge
behind the original data, performing the so called feature extraction
task. The actual meaning of each dimension (represented by hidden
nodes) in the new space is unknown, but we can be sure that they
are based on latent patterns binding the training cases. Therefore,
autoencoders are mainly used for the purpose of dimensionality
reduction, resulting more efficient than other techniques like PCA
(Principal Component Analysis) in such cases where non-linear
input has to be processed.

Autoencoders for rating prediction. As shown in [22], autoen-
coders can be sucessfully used in collaborative-filtering rating pre-
diction. If both the input and output layer represent the items in
a catalog, we may feed the autoencoder with ratings provided by
users, in order to let the network learn the latent relations behind
them. Therefore, hidden layers will encode a representation of the
input data which is based on the ratings provided by all the users
in a system. Since both input and output units model all the items
in the training set, the autoencoder will be able to compute scores
for users’ unrated items. Hence, it is possible to provide a top-N
recommendation list for each user by feeding the network with her
ratings once the autoencoder is trained.

3.2 KG
In 2012, Google announced its Knowledge Graph2 as a new tool
to improve the identification and retrieval of entities in return to
a search query. Most of the knowledge encoded in Google Knowl-
edge Graph actually came from Freebase. This was a crowdsourced
effort to create a base of facts in all possible knowledge domains. A
Knowledge Graph is a form of representation of knowledge through
a semantic (labelled) network that allows a system to store the hu-
man knowledge in a structured format well understandable by a
computer agent.
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Figure 2: Part of knowledge-graph.

Alongside with the development of the above mentioned initia-
tives, inspired by the seminal paper by Tim Berners-Lee et al. [3],
in the last decade, a set of technologies for the creation of the so
called Semantic Web were developed. These technologies are the
cornerstone in the development of the Linked Data initiative3: an
effort to create, interconnect and publish semantic datasets. Among
them, the most important is for sure DBpedia4. This encodes an
important amount of the information available in Wikipedia as
RDF triples and is freely available on the Web. If we think that each
Wikipedia page corresponds to a unique DBpedia entity, it is easy
to see how rich the knowledge available in the DBpedia graph is.

2https://googleblog.blogspot.it/2012/05/introducing-knowledge-graph-things-not.
html
3http://linkeddata.org
4http://dbpedia.org
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Exploiting graph data sources we may investigate relationships
among entities and hence discover meaningful paths within the
graph.

In figure 2 we show an excerpt of the DBpedia graph, involving
some entities in the movie domain. Interestingly we see that DB-
pedia encodes both factual information, e.g. “Cloud_Atlas_(film) has
director The_Wachowskis”, and categorical one such as “Cloud_Atlas_(film)
has subject Post-apocalyptic_films”.

4 SEMANTICS-AWARE AUTOENCODERS FOR
RATING PREDICTION

As we have seen in the previous section, autoencoders are unsuper-
vised artificial neural networks able to efficiently reconstruct input
data by compressing them in the hidden layers with a low dimen-
sionality representation. Unfortunately, just like other methods for
latent representation, they are unable to provide a meaning to the
latent factors they provide which are represented by the neurons
in the hidden layer. To address this issue, we propose to give an
explicit semantics to connections of the neurons within the hidden
layer by exploiting information explicitly available in knowledge
graphs. The main idea of our approach is therefore to map con-
nections between units from layer i to layer i+1, by mimicking
the connections in a knowledge graph (KG) as shown in Figure 3.
There we see that we injected only categorical information in the
autoencoder and we left out factual one. As a matter of fact, if we
analyze these two kinds of information in DBpedia we may notice
that:

• the quantity of categorical information is higher than factual
one. If we consider movies, the overall number of entities
they are related with is lower than the overall number of
categories;

• categorical information is more distributed over the items
than factual one. Going back to movies we see that they are
more connected with each other via categories than via other
entities.

Hence, we may argue that for a recommendation task where we
are looking for commonalities among items, categorical data may
result more meaningful than factual one. The main assumption
behind this choice is that, for instance, if a user rated positively
Cloud_Atlas this may be interpreted as a positive rating for the
connected category Post-apocalyptic_films.

In order to test our assumption, we mapped the autoencoder
network topology with the categorical information related to items
rated by users. As we build a different autoencoder for each user
depending on the items she rated in the past, the mapping with a
Knowledge Graph makes the hidden layer of variable length in the
number of units, depending on how much categorical information
is available for items rated by the specific user.

Letn be the number of items rated byu available in the graph and
Ci = {ci1, ci2, . . . , cim } be the set ofm categorical nodes associated
in the KG to the item i . Then, Fu =

⋃n
i=1Ci is the set of features

mapped into the hidden layer for the user and the overall number
of hidden units is equal to |Fu |. Once the neural network setup is
done, the training process takes place, feeding the neural network
with ratings provided by the user, normalized in the interval [0,1].
It is worth noticing that, as the autoencoder we build mimic the
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Figure 3: Architecture of a semantic autoencoder.

structure of the connections available in the Knowledge Graph, the
neural network we build is not fully connected. Moreover, it does
not need bias nodes because these latter are not representative of
any semantic data in the graph.

Nodes in hidden layer correspond to categorical information in
the knowledge graph. At every iteration of the training process,
backpropagation will change weights accordingly on edges among
units in the layers, such that the sum of entering edges in an output
unit will reconstruct the user rating for the item represented by
that unit. Regarding the nodes in the hidden layer, we may interpret
the sum of the weights associated to entering edges computed at
the end of the training process as the importance of that feature
in the generation of an output which, in our case, are the ratings
provided by the user.

4.1 User Profiles
Once the network converges we have a latent representation of
features associated to a user profile together with their weights.
Having one model per user allows us to find the best values of
parameters that best reconstruct the user ratings on the output.
However, very interestingly, this time the features represented by
nodes in the hidden layer also have an explicit meaning as they
are in a one to one mapping with categories in a knowledge graph.
Our autoencoder is therefore able of learning the semantics behind
the ratings of each user and weight them through backpropagation.
The structure of a generic hidden unit looks like the one depicted
in Figure 4. In our current implementation we used the well known
sigmoid σ (x) = 1

1+e−x activation function because we normalized
the design matrix to be within [0, 1] and so we scaled down all the
user ratings in that range. We trained each autoencoder for 10,000
epochs with a learning rate of r = 0.03; weights are initialized to
zero close values as Xavier et al. suggest in [17].
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Starting from the trained autoencoder, we may build a user pro-
file by considering the categories associated to the items she rated
in the past as features and by assigning them a value according
to the weights associated to the edges entering the corresponding
hidden units. Given a user u, the weight associated to a feature
c is then the summation of the weights wu

k (c) associated to the
edges entering the hidden node representing the Knowledge Graph
category c after training the autoencoder with the ratings of u.
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Figure 5: An excerpt of the network in Figure 3 after the
training.

More formally, we have:

ωu (c) =

|In(c) |∑
k=1

wu
k (c)

where In(c) is the set of the edges entering the node representing
the feature c . We remember that since the autoencoder is not fully
connected, |In(c)| varies depending on the related connections to
the category c in the knowledge graph. As an example, if we con-
sider the excerpt of the network in Figure 3 represented in Figure
5, for c = dbc : Kung_fu_films we have:

ωu (dbc : Kung_fu_films) = w11 +w12

By means of the weights associated to each feature, we can now
model a user profile composed by a vector of weighted categorical
features. Given Fu as the set of categories belonging to all the items
rated by u and F =

⋃
u ∈U Fu as the set of all features among all

the users in the system we have for each user u ∈ U and for each
feature c ∈ F :

P(u) = {⟨c,ω⟩ | ω = ωu (c) if c ∈ Fu }

Considering that users provide a different number of ratings, we
have an unbalanced distribution in the dimension of user profiles.
Moreover, as a user normally rate only a small subset of the entire
catalog, we have a huge number of missing features belonging
to items not rated by u. In order to compute values associated
to missing features, we leverage an unsupervised deep learning
model inspired by the word2vec approach [24]. It is an efficient
technique originally conceived to compute word embeddings (i.e.
numerical representations of words) by capturing the semantic
distribution of textual words in a latent space starting from their
distributionwithin the sentences composing the original text. Given
a corpus, e.g. an excerpt from a book, it projects each word in a
multidimensional space such that words similar from a semantic
point of view result closer to each other. In this way, we are able to
evaluate the semantic similarity between two words even if they
never appear in the same sentence. Given a sequence of words
[x1, . . . ,xn ] within a window, word2vec compute the probability
for a new word x ′ to be next one in the sequence. More formally, it
computes p(x ′ | [x1, . . . ,xn ]).

In our scenario, wemay imagine to replace sentences represented
by sequences of words with user profiles represented by sequences
of categories in c ∈ Fu and then use the word2vec approach to
compute for a given user u the weight of missing features c ′ < Fu .

We need to prepare the user profiles P(u) to be processed by
word2vec. Hence, we first generate a corpus made of sequences of
ordered features where the order is given by ω. The very prelim-
inary step, is that of selecting an order among elements c ∈ Fu

which results coherent for all u ∈ U thus moving from the set P(u)
to a representative sequence of elements s(u).

For each ⟨c,ω⟩ ∈ P(u)we create a corresponding pair ⟨c,norm(ω)⟩
with norm being the mapping function

norm : [0, 1] 7→ {0.1, 0.2, 0.3, . . . , 1}

that linearly maps5 a value in the interval [0, 1] to a real value in
the set {0.1, 0.2, 0.3, . . . , 1}. The new pairs form the set

Pnorm (u) = {⟨c,norm(ω)⟩ | ⟨c,ω⟩ ∈ P(u)}

For each normalized user profile set Pnorm (u) we then build the
corresponding sequence

s(u) = [. . . , ⟨ci ,norm(ωui )⟩, . . . ⟨c j ,norm(ωuj )⟩, . . .]

with ωui ≥ ωuj .
Once we have the set S = {s(u) | u ∈ U } we can feed the

word2vec algorithm with this corpus in order to find patterns of
features according to their distribution across all users. In the pre-
diction phase, by using each user’s sequence of features s(u) as
input for the trained word2vec model, we estimate the probability
of ⟨c ′,norm(ω ′)⟩ ∈

⋃
v ∈U Pnorm (v) − Pnorm (u) to belong to the

given context, or rather to be relevant for u. In other words, we
compute p(⟨c ′,norm(ω ′)⟩ | s(u)).

It is worth noticing that given c ′ ∈ Fu we may have multiple
pairs with c ′ as first element in

⋃
v ∈U Pnorm (v)−Pnorm (u). For in-

stance, given the category dbc:Kung_fu_films we may have both
⟨dbc : Kung_fu_films, 0.2⟩ and ⟨dbc : Kung_fu_films, 0.5⟩, with
the corresponding probabilitiesp(⟨dbc : Kung_fu_films, 0.2⟩ | s(u)),
p(⟨dbc : Kung_fu_films, 0.5⟩ | s(u)). Still, as we want to add the
5In our current implementation we use a standard minmax normalization.
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category dbc:Kung_fu_films togetherwith its correspondingweight
only once in the user profile we select only the pair with the highest
probability. The new user profile is then

P̂(u) = P(u)∪{⟨c,ω⟩ | argmax
ω ∈{0.1, ...,1}

p(⟨c,ω⟩ | s(u)) and ⟨c,ω⟩ < Pnorm (u)}

We point out that while the original P(u) is built by exploiting
only content-based information, the enhanced user profile P̂(u) also
considers collaborative information as it based also on the set S
containing a representation for the profiles of all the users inU .

4.2 Computing Recommendations
Given the user profiles represented as vectors of weighted features,
recommendations are then computed by using a well-known k-
nearest neighbors approach. User similarities are found through
projecting their user profile in a Vector Space Model, and then
similarities between each pair of users u and v is computed using
the cosine similarity:

sim(u,v) =
P(u) · P(v)

| |P(u)| | · | |P(v)| |
(1)

For each user u we find the top-k similar neighbors to infer
the rate r for the item i as the weighted average rate that the
neighborhood gave to it:

r (u, i) =

∑k
j=1 sim(u,vj ) · r (vj , i)∑k

j=1 sim(u,vj )
(2)

where r (vj , i) is the rating assigned to i by the user vj . We use then
ratings from Equation (2) to provide top-N recommendation for
each user.

5 EXPERIMENTS
In this section, we present the experimental evaluations performed
on three different datasets. We first describe the structure of the
datasets used in the experiments and the evaluation protocol and
then we move to the metrics adopted for the evaluation and the
discussion of obtained results.

Our experiments can be reproduced through the implementation
available on our public repository6.

5.1 Dataset
In order to validate our approach we performed experiments on
the three datasets summarized in Table 1.

#users #items #ratings sparsity

MovieLens 20M 138,493 26,744 20,000,263 99.46%
Amazon Digital Music 478,235 266,414 836,006 99.99%
LibraryThing 7,279 37,232 626,000 99.77%

Table 1: Datasets

In MovieLens 20M dataset, each user has at least 20 ratings which
are made on a 5-star scale; in Amazon Digital Music users express

6https://github.com/sisinflab/SEMAUTO-2.0

their interest in musical albums with a value in 1-5 range as well;
in LibraryThing rates are made on a 10-star scale.

In our experiments, we referred to the freely available knowledge
graph of DBpedia7. The mapping contains 22,959 mapped items
for MovieLens 20M, 4,077 items mapped for Amazon Digital Music
and 9,926 items mapped for LibraryThing. For our experiments,
we removed from the datasets all the items without a mapping in
DBpedia.

5.2 Evaluation protocol
Here, we show how we evaluated performances of our methods in
recommending items. We split the dataset using Hold-Out 80/20,
ensuring that every user has 80% of their ratings in the training
set and the remaining 20% in the test set. For the evaluation of our
approach we adopted the "all unrated items" protocol described
in [41]: for each user u, a top-N recommendation list is provided
by computing a score for every item i not rated by u, whether i
appears in the user test set or not. Then, recommendation lists are
compared with the test set by computing performance metrics.

5.3 Metrics
In this work we avoided to use Root Mean Squared Error (RMSE)
because a good predictor is not necessarily a good recommender.
It is known that it may estimate the same error for top-N items
and bottom-N items, without taking into account that an error in
top-N items should be more relevant compared to an error for lower
ranked items. For this reason, we chose to use Precision, Recall and
nDCG to evaluate the accuracy of our model in recommendation
scenarios. To be more precise, we focused the evaluation on F1-
Score, because it combines both Precison and Recall in a harmonic
mean.

Precision is defined as the fraction of retrieved items that are
relevant to the user.

Precision@N =
|Lu (N ) ∩TS+u |

N
where Lu (N ) is the recommendation list up to the N-th element
and TS+u is the set of relevant test items for u. Precision measures
the system’s ability to reject any non-relevant documents in the
retrieved set.

Recall is defined as the fraction of relevant items that are re-
trieved.

Recall@N =
|Lu (N ) ∩TS+u |

TS+u
Recall measures the system’s ability to find all the relevant doc-

uments.
Recall increases when a relevant document is retrieved but this

causes Precision to decrease, for that reason is necessary to find out
a good trade-off between the two measures. Precision and recall can
be therefore combined with each other in the F1 measure computed
as the harmonic mean between precision and recall.

F1@N = 2 ·
Precision@N · Recall@N

Precision@N + Recall@N

7https://dbpedia.org
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In information retrieval, Discounted cumulative gain (DCG) is
a metric of ranking quality that measures the usefulness of a doc-
ument based on its position in the result list. It is based on two
assumptions: the former is that high relevant documents are more
useful than marginally relevant documents, the latter is that lower
ranked relevant documents means less usefulness for user since
it is less likely to be consumed. Recommended results may vary
in length depending on the user, therefore is not possibile to com-
pare performances among different users, so the cumulative gain at
each position should be normalized across users. Hence, normalized
discounted cumulative gain, or nDCG, is computed as:

nDCGu@N =
1

IDCG@N

N∑
p=1

2rup − 1
log2(1 + p)

where p is the position of an item in the recommendation list and
IDCG@N indicates the score obtained by an ideal ranking of Lu (N ).

Accuracy metrics are a valuable way to evaluate the performance
of a recommender system. Nonetheless, it has been argued [40] that
also diversity should be taken into account when evaluating users’
satisfaction. In order to provide diversified recommendation lists,
unpopular items as well as popular ones should be recommended.
Aggregate diversity measures how much of the catalog is being
consumed:

aддrdiv = |
⋃
u ∈U

Lu (N )|

where Lu (N ) is the recommendation list up to the N-th element of
user u ∈ U . This metric is quite simple because it just counts the
unique number of items across all recommendation lists without
taking into account how they are distributed among them. There-
fore, even if the aggregate diversity metric results to be maximized,
some items may be suggested a few times. In order to measure
the distribution of items across recommendation lists, Gini index
should be used:

Gini =
1

n − 1

n∑
j=1

(2j − n − 1)p(i j )

where p(i) is the proportion of user choices for item i and i1, ...in is
the list of items ordered according to increasing p(i). A Gini index
value equal to 0 means that all items are choosen equally often,
while it is 1 if a single item is always chosen.

5.4 Results Discussion
In our experiments, we compared our approach with three differ-
ent state of the art techniques widely used in recommendation
scenarios: BPRMF, WRMF and a single-layer autoencoder for rat-
ing prediction. BPRMF [36] is a Matrix Factorization algorithm
which leverages Bayesian Personalized Ranking as objective func-
tion. WRMF [19, 34] is a Weighted Regularized Matrix Factorization
method which exploits users’ implicit feedbacks to provide recom-
mendations. In their basic version, both strategies rely exclusively
on the User-Item matrix in a pure collaborative filtering approach.
They can be hybridized by exploiting side information, i.e. addi-
tional data associated with items. In our experiments, we adopted
categorical information found on the DBpedia Knowledge Graph
as side information. We used the implementations of BPRMF and

WRMF available in MyMediaLite8 [16] and implemented the au-
toencoder in Keras9. We verified the statistical significance of our
experiments by using Wilcoxon Signed Rank test, in fact we get a
p-value very close to zero, which ensures the validity of our results.
In Table 3 we report the results gathered on the three datasets by
applying the methods discussed above. As for our approach KG-
AUTOENCODER, we tested it for different number of neighbors
by varying k .
In terms of accuracy, we can see that KG-AUTOENCODER outper-
forms our baselines on both MovieLens 20M and Amazon Digital
Music datasets, while on LibraryThing the achieved results are
quite the same. In particular, on the LibraryThing dataset, only the
fully-connected autoencoder performs better than our approach
with regard to accuracy.
Concerning diversity, we get much better results on all the datasets.
Furthermore, by analyzing the gathered results, it seems that our
approach provides very discriminative descriptions for each user,
letting us to identify the most effective neighborhood and compute
both accurate and diversified recommendations. As a matter of fact,
we achieve the same results in terms of accuracy as the baselines
by suggesting much more items.

As shown in Table 2, KG-AUTOENCODER performs better on
those datasets whose items can be associated to a large amount of
categorical information, which implies the usage of many hidden
units. This occurs because very complex functions can be modeled
by ANNs if enough hidden units are provided, as Universal Ap-
proximation Theorem points out. For this reason, our approach
turned out to work better on MovieLens 20M dataset (whose related
neural networks have a high number of hidden units) rather than
the others. In particular, the experiments on LibraryThing dataset
show that the performances get worse as the number of the neurons
decreases, i.e. available categories are not enough.

avg #features std avg #features/avg #items

Movielens 20M 1015.87 823.26 8.82
Amazon Digital Music 7.22 9.77 5.17
LibraryThing 206.88 196.64 1.96

Table 2: Summary of hidden units for mapped items only.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented a recommendation approach that
combines the computational power of deep learning with the rep-
resentational expressiveness of knowledge graphs. As for classical
applications of autoencoders to feature selection, we compute a
latent representation of items but, in our case, we attach an explicit
semantics to selected features. This allows our system to exploit
both the power of deep learning techniques and, at the same time,
to have a meaningful and understandable representation of the
trained model. We used our approach to autoencode user ratings
in a recommendation scenario via the DBpedia knowledge graph
and proposed an algorithm to compute user profiles then adopted
to provide recommendations based on the semantic features we
8http://mymedialite.net
9https://keras.io

7

http://mymedialite.net
https://keras.io


k F1 Prec. Recall nDCG Gini aggrdiv
MOVIELENS 20M

AUTOENCODER − 0.21306 0.21764 0.20868 0.24950 0.01443 1587
BPRMF − 0.14864 0.15315 0.14438 0.17106 0.00375 3263
BPRMF + SI − 0.16838 0.17112 0.16572 0.19500 0.00635 3552
WRMF − 0.19514 0.19806 0.19231 0.22768 0.00454 766
WRMF + SI − 0.19494 0.19782 0.19214 0.22773 0.00450 759

KG-AUTOENCODER

5 0.18857 0.18551 0.19173 0.21941 0.01835 5214
10 0.21268 0.21009 0.21533 0.24945 0.01305 3350
20 0.22886 0.22684 0.23092 0.27147 0.01015 2417
40 0.23675 0.23534 0.23818 0.28363 0.00827 1800
50 0.23827 0.23686 0.23970 0.28605 0.00780 1653
100 0.23961 0.23832 0.24090 0.28924 0.00662 1310

AMAZON DIGITAL MUSIC
AUTOENCODER − 0.00060 0.00035 0.00200 0.00102 0.33867 3559
BPRMF − 0.01010 0.00565 0.04765 0.02073 0.00346 539
BPRMF + SI − 0.00738 0.00413 0.03480 0.01624 0.06414 2374
WRMF − 0.02189 0.01236 0.09567 0.05511 0.01061 103
WRMF + SI − 0.02151 0.01216 0.09325 0.05220 0.01168 111

KG-AUTOENCODER

5 0.01514 0.00862 0.06233 0.04365 0.03407 3378
10 0.01920 0.01091 0.07994 0.05421 0.05353 3449
20 0.02233 0.01267 0.09385 0.06296 0.08562 3523
40 0.02572 0.01460 0.10805 0.06980 0.14514 3549
50 0.02618 0.01486 0.10974 0.07032 0.17192 3549
100 0.02835 0.01608 0.11964 0.07471 0.24859 3448

LIBRARYTHING
AUTOENCODER − 0.01562 0.01375 0.01808 0.01758 0.07628 2328
BPRMF − 0.01036 0.00954 0.01134 0.01001 0.06764 3140
BPRMF + SI − 0.01065 0.00994 0.01148 0.01041 0.10753 4946
WRMF − 0.01142 0.01071 0.01223 0.01247 0.00864 439
WRMF + SI − 0.01116 0.01030 0.01217 0.01258 0.00868 442

KG-AUTOENCODER

5 0.00840 0.00764 0.00931 0.00930 0.13836 4895
10 0.01034 0.00930 0.01163 0.01139 0.07888 3558
20 0.01152 0.01029 0.01310 0.01248 0.04586 2245
40 0.01195 0.01073 0.01347 0.01339 0.02800 1498
50 0.01229 0.01110 0.01378 0.01374 0.02403 1312
100 0.01278 0.01136 0.01461 0.01503 0.01521 873

Table 3: Experimental Results

extract with our autoencoder. Experimental results show that we
are able to outperform state of the art recommendation algorithms
in terms of accuracy and diversity. The results presented in this
paper pave the way to various further investigations in different
directions. From a methodological and algorithmic point of view,
we can surely investigate the augmentation of further deep learning
techniques via the injection of explicit and structured knowledge
coming from external sources of information. Giving an explicit
meaning to neurons in an ANN as well as to their connections can
fill the semantic gap in describing models trained via deep learning
algorithms. Moreover, having an explicit representation of latent
features opens the door to a better and explicit user modeling. We
are currently investigating how to exploit the structure of a Knowl-
edge Graph-enabled autoencoder to infer qualitative preferences

represented by means of expressive languages such as CP-theories
[8]. Providing such a powerful representation may also result in
being a key factor in the automatic generation of explanation to
recommendation results.
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