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Abstract

Recommender systems aim to provide users with accurate item sug-
gestions in a personalized fashion, but struggle in the case of cold start
users, for whom there is a scarcity of preference data. User preferences
can be either explicitly stated by the users —often by means of ratings—,
or implicitly acquired by a system —for instance by mining text reviews,
search queries, and purchase records. Recommendation methods have
been mostly designed to deal with numerical ratings. However, real sce-
narios with user preferences expressed in the form of binary and unary
(positive-only) feedback, e.g. the thumbs up/down in YouTube, and the
likes in Facebook, are increasingly popular, and make the user cold start
problem even more challenging. To address cold start with positive-only
feedback situations, we propose to exploit data additional to user prefer-
ences by means of specialized hybrid recommendation methods. In par-
ticular, we investigate a number of graph-based and matrix factorization
recommendation models that jointly exploit user preferences and item se-
mantic metadata automatically extracted from the well known knowledge
graph of DBpedia. Following a rigorous evaluation methodology for cold
start, we empirically compare the above hybrid recommendation models
on a Facebook dataset containing users likes for items in three different
domains, namely books, movies and music. The achieved experimental re-
sults show that the semantics-aware hybrid approaches we propose, out-
perform content-based and collaborative filtering baselines. In addition
to recommendation accuracy, in our evaluation we also consider individ-
ual and aggregate diversity of recommendations as key quality factors in
users’ satisfaction.
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1 Introduction

Recommender systems (RSs) have become fundamental tools in helping users to
find what is relevant for them in situations where information overload makes
such task hard or even impossible. For such purpose, they capture, model
and exploit user preferences, which can be obtained either explicitly by means
of ratings, or implicitly e.g. by processing text reviews, and by mining item
consuming and purchasing records. Two main families of recommendation ap-
proaches exist, namely content-based and collaborative filtering. The former
commonly relies on content-based features to represent both user and item pro-
files, and provides personalized recommendations based on similarities between
the user’s and items profiles; the latter, in contrast, works with rating-based
user/item profiles, and provides recommendations based on similarities between
profiles of like-minded users.

The majority of the most effective collaborative filtering approaches have
been designed to deal with numerical ratings, such as the 5-star ratings in Ama-
zon1 and Netflix2, for both rating prediction and item ranking (a.k.a. top-N
recommendation) tasks, and have been shown to generally outperform content-
based approaches [1]. In many e-commerce and social network sites, however,
user preferences are expressed in the form of binary and unary (positive-only)
ratings, such as the thumbs up/down in YouTube3 and the likes in Facebook4,
respectively. Moreover, in these cases, the well-known problem of cold-start in
collaborative filtering [1], which refers to the scarcity of ratings at user level, is
highly remarkable. In this context, the consideration of content-based features
could improve the understanding of the users’ preferences, as well as the finding
of similar users and items. For instance, in the movie recommendation domain,
a user may be suggested with movies based on her and others’ preferences for
particular genres, directors and actors. The usage of hybrid recommendation
methods, which benefit from the advantages of both the aforementioned ap-
proaches, may be also explored to tackle the cold-start problem. In general,
e-commerce and social network sites do not provide the content-based features
that comprise item metadata. These features, nonetheless, can be extracted
from text descriptions about the items, e.g., movie plots, song lyrics, and book
synopses, or can be established by means of social tags manually assigned by
users to the items. More recently, knowledge graphs have been exploited as a
new source of metadata to enhance the description of catalog items. Via item
linking techniques, it is possible to map a string representing an item, e.g.,
the name of a movie, to its corresponding entity in the knowledge graph thus
providing access to its structured description.

While new recommendation approaches have been proposed over the years
mainly devoted to maximizing accuracy, more recently it has been recognized
that predictive accuracy of recommendations is not enough to judge the effec-

1Amazon online shopping, www.amazon.com
2Netflix movie and TV series streaming, www.netflix.com
3YouTube online video sharing, www.youtube.com
4Facebook online social network, www.facebook.com
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tiveness of a recommender system [2]. The most accurate recommendations for
a user are often too similar to each other, and attention has to be paid towards
the goal of improving diversity in recommended items, known as individual di-
versity [2]. Indeed, a recent user study pointed out a strong correlation between
perceived accuracy and user satisfaction for approaches able to better diversify
the returned list of recommended items [3]. While this kind of dimension is
list-wise, since it represents the diversity degree in the recommendations list,
the importance of a system-wise diversity has been revealed from other studies
[4]. In particular, aggregate diversity has been proposed to assess the ability of a
system to cover the items catalog, and equally distribute the recommendations
across all the items. Such quality factor results important for both a user and
a business perspective: users may receive less obvious and more personalized
recommendations, complying with the goal of helping on the discover of new
contents [4], and businesses may increase their sales [5].

In this paper we focus on the cold-start problem in recommendations with
positive-only feedback, through a number of graph-based and matrix factoriza-
tion recommendation models that jointly exploit user ratings and item meta-
data. To obtain metadata for the available items, in this paper we present a
method that automatically maps the items names to URIs of semantic entities
in DBpedia5, which is considered as the core repository of the Linked Open Data
(LOD) cloud. In this context, the use of LOD does not merely allow describing
items by means of content-based features, but also creating semantic networks
that relate items and their attributes with each other, e.g., Kubrick’s ”The Full
Metal Jacket” is a movie based on Hasford’s ”The Short-Timers” novel, and
”Anti-War Films” is a subgenre of ”Political Films.”

We evaluate the above mentioned models with Facebook likes as source of
user preferences. We propose to exploit semantic networks connecting users,
liked items, and item attributes for recommendation purposes in two ways:
first, by directly mining the networks via graph-based recommendation models;
second, by extending content-based item profiles with related attributes, and
incorporating the enriched profiles into matrix factorization recommendation
models. We evaluate the two types of approaches, along with several baselines,
on a Facebook dataset comprising three distinct domains, namely books, movies
and music.

This paper considerably extends our previous work [6] where we showed
preliminary results only in terms of recommendation accuracy. Here we also
consider individual diversity and aggregate diversity as key quality factors for
users’ satisfaction, and conduct more in-depth analysis and discussion of the
empirical results than in the previous paper. In particular, we also describe dif-
ferences among the various models taking into account the trade-off between the
different recommendation quality dimensions we evaluated. Our experiments
show that the proposed hybrid recommendation models, which exploit rating
and semantic metadata, outperform standard content-based and collaborative
filtering baselines, particularly in the most extreme cold-start scenarios.

5wiki.dbpedia.org
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2 Related Work

The user cold start problem arises when a new user registers into a system, and
has not yet provided any preference feedback, either implicit or explicit, or when
she had just a few interactions with the system, and the number of collected
preferences is not enough to build an accurate user profile and then compute
reliable recommendations. The cold start has been mainly addressed from two
perspectives. The first perspective corresponds to active learning techniques
[7], which attempt to collect feedback by directly asking the user to rate certain
items before generating the recommendations. These techniques usually seek
popular items that the user is likely to know, and whose rating would be useful
to improve the overall system performance. The second perspective is based on
the exploitation of additional side information about the users or the items in
the recommendation process. For instance, Pazzani [8] used demographic data
like gender, age, area code, education and employment information, to compute
user-user similarities, while Braunhofer et al. [9] showed that information about
the user’s personality can be more effective in some applications. Recently,
cross-domain recommendation methods have been proposed that exploit user
preferences in different source domains to mitigate the lack of information in a
target domain [10].

In this work we face the user cold-start problem with positive-only feedback
and available item side information, by investigating recommendation models
that can jointly exploit user feedback and additional item metadata. In par-
ticular, we propose the usage of semantic metadata extracted from DBpedia
to build heterogeneous semantic networks that link users, items, and item at-
tributes, and than the exploitation of such networks either directly through
graph-based models, or by injecting their information into factorization-based
models. Our first model is based on HeteRec [11], which uses meta-path based
features to represent the connectivity between users and items along different
types of paths. The second model is PathRank [12], an extension of the Person-
alized PageRank algorithm able to exploit different paths on a heterogeneous
graph during the random walk process. As factorization-based models, we inves-
tigate Collective Matrix Factorization and Factorization Machines. The former
is used to simultaneously factorize the user-item matrix and the item-item simi-
larity matrix [13]. The latter represents a generalization of matrix factorization
methods able to integrate different types of side information in the same model
at a low computational cost [14]. In Section 4 we provide a detailed description
of the above models.

The motivation behind the use of DBpedia for semantically building item
profiles corresponds to the recent tendency of using external information from
well-known Linked Open Data (LOD) resources in order to implement semantic-
aware recommender systems. There are several advantages from the use of LOD
in content-based and hybrid recommender systems. In particular, (i) great
amount of multi-domain and ontological knowledge is freely available in the
LOD cloud for feeding the systems, and (ii) content preprocessing for obtaining
a structured representation of the item descriptions is not necessary [15]. In

4



[16] the authors show that the exploitation of DBpedia produce more diverse
recommendation results compared to the usage of Freebase.

So far, many semantic-aware recommendation models have been proposed,
in general aiming to improve recommendation accuracy. Authors in [17] pro-
posed a recommender system fed by LOD, and reported experimental results in
terms of precision and recall. In [18] DBpedia was used to enrich music playlists
extracted from a Facebook profile with new related musicians while in [19] data
coming from DBpedia have been used to enrich the Movielens dataset for film
recommendation. An event recommendation system based on linked data and
user diversity was proposed in [20]. Another use of LOD for content-based
RSs was explored in [21], where the authors presented Contextual eVSM, a
content-based context-aware recommendation framework that adopts a seman-
tic representation based on distributional models, and entity linking techniques
to detect entities in free text and map them to LOD. Graph-based distribu-
tional semantics is also at the base of the approach proposed in [22]. More
recently, in [23] entity linking from textual information has been adopted as a
preprocessing step to build a recommender systems in the sounds and music
domains. Finally, a hybrid model presented in [24] exploits LOD sub-graphs for
building a semantic network, and extracting relevant path-based features de-
scribing complex relationships between users and items, to eventually compute
recommendations with a learning to rank algorithm.

Compared to most of the recommendation approaches proposed in the liter-
ature that have been specifically designed to exploit LOD, the graph-based and
factorization-based models used in this paper represent a more generic and ab-
stract approach to hybrid recommendation. Indeed, both graph-based models
can applied to generic information graphs, Factorization Models can integrate
any type of side information, and Collective Matrix Factorization relies on item-
item similarities that can be computed with different metrics, not necessarily
based on semantics.

3 Semantically Enriched Facebook Likes Dataset

The experimental evaluation presented in this paper is conducted on a Facebook
dataset with user likes for book, movie and music items, we extended with
item metadata extracted from DBpedia. In this section, we comprehensively
describe the dataset and the developed process to automatically extract data
from DBpedia to build semantic networks relating items and features.
Original Positive-only Feedback Data. Our dataset initially consisted of
a large set of likes assigned by users to items in Facebook. Using the Facebook
Graph API, a user’s like is retrieved in the form of a 4-tuple with the following
information: identifier, name and category of the liked item, and timestamp of
the like creation. The name of an item is given by the user who created its
Facebook page. As distinct names may exist for a particular item, users may
express likes for different Facebook pages, which actually refer to the same item.
Aiming at unifying and consolidating the items of the extracted Facebook likes,
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we developed a method that automatically maps items to their corresponding
DBpedia entities, e.g., http://dbpedia.org/resource/The_Godfather for the
identified names of “The Godfather” movie. Details of the mapping process can
be found in [6]. After filtering the items without a corresponding DBpedia
resource, our final dataset contains 315870 likes provided by 1876 users on 4001
book pages, 1446017 likes provided by 26943 users on 3907 movie pages, and
1311974 likes provided by 49369 users on 5751 music pages. The data sparsity
is more than 99% for all the three domains.
Semantically Annotated Dataset. For every linked entity, we accessed
DBpedia to retrieve the its metadata, which afterwards has been used as input
for the recommendation models. In particular, we posed SPARQL queries to the
DBpedia endpoint asking for all the properties and objects in the triples having
the target entity as subject. Since our ultimate goal is item recommendation,
we only gathered metadata that may be relevant to relate common preferences
of different users. Thus, we considered only meaningful subset of properties for
each domain6.
Semantically Enriched Item Profiles. Once we identify books, movies,
and music artists and bands as the target items to be recommended, we can
distinguish between three types of item metadata extracted from DBpedia.
The first type of metadata is represented by the item attributes, e.g., the
genre(s), director(s) and actors of a particular movie. Second, the item-item
properties that directly relate items with each other, e.g., the novel that a
movie is based on (http://dbpedia.org/ontology/basedOn property), the
prequel/sequel of a movie (http://dbpedia.org/ontology/previousWork and
http://dbpedia.org/ontology/subsequentWork properties), and the musi-
cians of a band (http://dbpedia.org/ontology/bandMemberproperty). Fi-
nally, attribute-attribute properties generate extended item attributes that
originally do not appear as metadata of the items, e.g., the subgenres of a partic-
ular music genre (http://dbpedia.org/ontology/musicSubgenre property).
The above three types of item metadata constitute the semantically enriched
item profiles that we adopted in the recommendation models we propose.

4 Evaluated recommendation models

In the following we present the proposed recommendation models, which jointly
use user ratings and semantically enriched item profiles. The links between
users, items, and item attributes extracted from DBpedia constitute a semantic
network, that we propose to exploit i) directly by means of the graph-based
models, and ii) indirectly by enriching item profiles that are incorporated into
matrix factorization models.
Graph-based Models. The importance of graph-based approaches to rec-
ommendation has emerged concurrently with the increasing availability of ad-
ditional user and item data. These approaches foster combining the user-item

6The complete list of DBpedia properties selected for each of the three domains in our
dataset is shown in our previous work [6].
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Figure 1: Example of a heterogeneous information network

rating matrix with side information into a graph, and then applying graph min-
ing techniques. More specifically, as shown in Figure 1, a rating matrix is trans-
formed into a bipartite graph component –which consists of user and item nodes
linked with rating/like edges– extended to form a multipartite graph, includ-
ing nodes representing additional entities, which are related to items. Within
the graph it is also possible to include other edges, representing e.g. contex-
tual information for the ratings, social connections between users, and semantic
relations between entities [25]. The resulting graph can be thus defined as a het-
erogeneous information network consisting of a multi-typed and multi-relational
directed graph, with nodes and edges of different types [26].

Structuring all the available data in the form of a graph leads to different ad-
vantages: (i) well-known graph-based algorithms can be used to develop hybrid
recommender systems able to exploit the different types of information by surf-
ing the graph [11]; (ii) both content and collaborative features are represented
in a uniform setting, thus leveraging the multi-relational nature of the graph;
(iii) the graph can be directly extended with information already available in
the form of graphs, such as Linked Open Data [27]; (iv) exploring the graph may
lead to relevant, but not obvious recommendations and also help on addressing
the cold-start scenario. In fact, exploring longer paths in the network could
overcome the lack of information connecting users and items.

Given a graph G, our aim is to produce personalized recommendations lever-
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aging the knowledge it encodes. We propose to exploit the paths among users
and items composed by different types of relations. For example, a user may
be connected to an item i by the relation (like ◦ director ◦ director−1), which
basically means that the user likes one or more items with same director of item
i7. These sequences of relations are called meta-paths and their combination
with nodes they cross by are called path instances [26].

HeteRec is a hybrid method based on matrix factorization that uses meta-
path based latent features to represent the connectivity between users and
items along different types of paths in a heterogeneous information network
[11]. Briefly, for each meta-path, HeteRec computes the relative diffused user
preferences matrix extending the similarity measure PathSim [26] in order to
include the user feedback. More formally, the user preference diffusion score
between user u and item j, along a generic meta-path P , is defined as:

sim(u, j) =
∑

i∈R(U)

2 · r(u, i) · |pi→j : pi→j :∈ P |
|pi→i : pi→i ∈ P |+ |pj→j : pj→j ∈ P |

(1)

where px→y is a path instance between the items x and y.
Basically, the previous formula is a weighted sum of PathSim values among

the items in the user profiles and the target item j, where the numerator mea-
sures the connectivity defined by the number of path instances between them
following P , and the denominator represents the balance of their popularity in
the graph. Once the matrices are computed, HeteRec factorizes them with a
low-rank matrix factorization technique. Unfortunately, their application result
infeasible with user preferences matrices which are usually dense. A trunca-
tion strategy can be used to keep the matrices sparse, reducing the amount
of space and time consume [25], but could remove valuable information in the
cold start scenario. Therefore, our model is directly based on the non-factorized
diffused user preferences matrices. The estimated user-item preference matrix
is finally computed as the weighted sum of the different meta-path matrices
R∗ = wP1 · R ∗P1 +... + wPm · R∗Pm , with m being the number of meta-paths,
while wP1 and R∗P1 the weight and the diffused user preferences matrix of i-th
meta-path, respectively. HeteRec splits the users into clusters, and then com-
putes the importance of each meta-paths with a learning-to-rank approach. As
we face the user cold-start situation, clustering the users is impracticable with
a few ratings and without additional information. Therefore, we compute the
meta-paths weights globally for all the cold-start users.

PathRank is an extension of the Personalized PageRank algorithm able to
exploit different paths on a heterogeneous graph during the random walk process
[12]. At each iteration, the random walker has three options: transition, move
to one of adjacent nodes with probability wtrans ; restart, restart the random
walk from one of the query nodes with probability wrestart; path following,
considering one of the meta-paths with probability wpath. Therefore, PathRank
vector r is computed as:

r∗ = wtrans ·MT
G · r +wrestart · t +wpath · (wP1

·MT
P1

+ ...+wPm
·MT

Pm
) · r (2)

7Given a relation r going from x to y we denote with r−1 the relation going from y to x.
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where MG is the item-item transition matrix of the full graph G, MPi is the
transition matrix of the i-th meta-path, ~t is the teleport vector representing the
recommendation query (user profile) initialized with 1/|R(u)| for each item in
R(u), 0 otherwise.
Factorization-based Models. Matrix factorization (MF) models are consid-
ered as the state-of-the-art for collaborative filtering, and have been extensively
studied in recent years [28]. These approaches gained popularity in the con-
text of the Netflix prize, and since then they have been successfully used in
many applications. Focusing on the rating prediction task, Funk [29] presented
one of the first approaches that approximate the user-item rating matrix as the
product of two low-rank matrices of user and item latent factors, respectively.
Building on MF, Koren et al. [28] proposed the well-known SVD++ model
where the user latent features are extended with additional parameters for each
rated item. The motivation is that the information of whether a user chooses
or not to rate an item is also an indicator of her preferences, and should be
taken into account in the rating prediction. Despite their success, the previous
models were designed to deal with numeric, explicit ratings. However, typical
user feedback implicitly acquired by most real-world systems are positive-only,
and require a different treatment. For such purpose, Hu et al. [30] presented a
MF method that also models unobserved user-item interactions, as the lack of
this information could indicate that the user dislikes the item or that she simply
is unaware of it.

Basically, MF models learn low-rank representations of the user-item matrix
deriving some latent factors from rating patterns, and then map both users and
items to a joint latent factor space of dimensionality k, with k usually much
smaller then the dimensions of the original user-item matrix. Therefore, the
interactions between users and items are modeled as inner products in the latent
factor space. More formally, each item i is associated with a vector qi ∈ Rk,
where each element in qi indicates the extent to which the item possesses the
corresponding factor. While each user u is associated with a vector pu ∈ Rk,
whose elements indicate the importance of the corresponding factor for the user.
Finally, their scalar product captures the interaction between user u and item i
and can be used for rating estimation as follows:

r∗(u, i) = qT
i · pu (3)

While the rating can be easily estimated once the model is computed, the
major challenge remains to identify accurate mappings. Earliest implementa-
tions of matrix factorization models relied on imputation techniques to remove
the user-item matrix sparsity filling in the void cells, for instance with the av-
erage ratings for a user or for an item [31]. However, imputation increases the
amount of data, making the computation more expansive, and moreover can lead
to less accurate recommendations [28]. Recently, a number of MF approaches
that directly model only the observed ratings have been proposed. In the most
common formulation of MF, to learn the model (i.e. qi and pu vectors) the
systems aims at optimize a regularized squared error cost function, as follows
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∗minq∗,p∗

∑
(u,i)∈K

(r(u, i)− r∗(u, i) + λ

(∑
u

||qi||2 +
∑
i

||pu||2
)

(4)

where K is the set of the (u, i) pairs representing all the known interactions
in the user-item matrix, and the term λ controls the importance of the reg-
ularization term used to prevent overfitting. The choice of λ depends on the
data and can be determined by cross validation. Usually, Stochastic Gradient
Descent is used for minimizing the optimization problem, and hence learning
the factors[29].

A specific matrix factorization model has been proposed in [32] for better
handling implicit feedback which takes into account both observed and unob-
served feedback in the training process. The motivation is that the model should
not only be able to predict high scores for relevant items, but also whether an
item was rated or not. However, non-observed user-item interactions may not
reflect the user does not like an item, but does not know it. Hence, the model
includes a confidence hyperparameter c(u,i) in the loss function to penalize mis-
takes on observed and non-observed preference predictions differently:

∗minq∗,p∗

∑
(u,i)

c(u,i) · (p(u, i)− r∗(u, i))2 + λ ·

(∑
u

||qi||2 +
∑
i

||pu||2
)

(5)

where p(u, i) represents a binarized derivation of r(u, i), that returns 1 for
r(u, i) > 0 and 0 otherwise.

The confidence parameter is set as c(u,i) = 1 +α · r(u, i) with α > 0, so that
mistakes predicting observed feedback are more penalized. It is important to
note that Equation 5 considers all possible (u, i) pairs, while Equation 4 uses
only the known interactions in the user-item matrix. This is possible since the
value of p(u, i) is assumed as 0 for all the unknown (u, i) pairs. The rationale
of the method is that the system has minimal confidence in p(u, i) for every
user-item pair, but as it observes more evidence for positive preference, the
confidence in p(u, i) increases accordingly [32].

Collective Matrix Factorization (CMF) [13] is a representative matrix
factorization method that originally showed significant improvements when item
genres are taken into account for computing movie recommendations. The idea
behind CMF is to simultaneously factorize the user-item matrix and the item-
item similarity matrix. Predictions are still computed using Equation 3, but
CMF includes an additional set of item latent vectors sj ∈ RK feature to model
the pairwise item interactions through the similarities. The loss function then
becomes:
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∗minq∗,p∗,r∗γ ·
∑
(u,i)

c(u,i) · (p(u, i)− r∗(u, i))2 + (1− γ) ·
∑
i

∑
j

(si,j − qT
i · sj)2

+λ ·

∑
u

||qi||2 +
∑
i

||pu||2 +
∑
j

||sj||2

(6)

where si,j represents the content-based similarity between items i and j;
γ ∈ (0, 1] weighs the importance of item similarities in the factorization. If
γ = 1 the result is the same of IMF, whereas γ close to 0 would ignore the
preference predictions.

Factorization Machines (FMs) [14] are becoming increasingly popular,
as they provide a principled and generic approach to integrate metadata into
MF, showing promising results in the task of context-aware recommendation. A
different set of approaches jointly factorizes the user-item preference and item-
metadata matrices, sharing the item latent factors between both decomposi-
tions. Therefore, FMs provide a generic way to extend the standard MF model
with different kinds of side information. The idea is to (one-hot) encode the
user/item metadata information in a single feature vector x ∈ Rn=|U |+|I|+|F |

where |U |, |I|, |F | are the number of users, items, and features, respectively. The
model equation for a factorization machine of degree d = 2 is defined as:

r∗(u, i) = w0 +

n∑
a=1

wa · xa +

n∑
a=1

n∑
b=a+1

〈va,vb〉 · xa · xb (7)

where the model parameters w0, w ∈ Rn, V ∈ Rn×k have to be estimated,
and 〈·, ·〉 indicates the scalar product of two vectors. A row vi in V represents
the i-th variable with k factors. The wa parameters model the contribution
of each component in the feature vector, whereas the weights for the pairwise
interactions are factorized as the product of two latent feature vectors va and vb.
FMs generalize all other MF models by taking in input any type of user/item
metadata. Moreover, it has been demonstrated that the model in Equation 7
can be computed in linear time, hence parameters can be learned efficiently via
stochastic gradient descent [14].

5 Experiments

In this section we detail the setting and results of the experiments performed to
evaluate the recommendation quality in the cold-start situation. We adopted
the graph-based and matrix factorization models presented in Section 4 on our
Facebook dataset (see Section 3), for three distinct domains (books, movies and
music). The goal is to evaluate the effectiveness of considering jointly user likes
and item metadata to produce accurate recommendations for cold-start users,
and to compare the different approaches in this setting.
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Evaluation Methodology. The evaluation of the proposed techniques was
based on the TestItems evaluation methodology proposed in [33], using a modi-
fied user-based 5-fold cross-validation strategy proposed in [34] for the cold-start
user scenario. First, we selected the users with at least 20 likes, shuffled and
split into five (roughly) equally sized subsets. In each cross-validation stage, we
kept all the likes from four of the groups in the training set, whereas the likes
from the users in the fifth group were randomly split into three subsets: train-
ing set (10 likes), validation set (5 likes), and testing (remaining likes, hence at
least 5). In order to simulate different user profile sizes from one to ten likes, we
repeated the training and the evaluation ten times, starting with the first like
in the training set and incrementally increasing it one by one. This evaluation
setting allowed us to evaluate each user profile size with the same test set thus
avoiding potential biases in the evaluation, as some accuracy metrics can be
sensitive to the test set size [34].

To evaluate the ranking accuracy of the recommendations, we used Mean Re-
ciprocal Rank (MRR), which computes the average reciprocal rank of the first
relevant recommended item, and hence results particularly meaningful when
users are provided with few but valuable recommendations (i.e., Top-1 or Top-
3) [1]. As recommendation accuracy has been proved to be not sufficient to
guarantee a satisfying user experience, attention has been paid to other impor-
tant quality factors such as individual and aggregate diversity. The former is a
list-wise property that indicates the ability of a system to provide diverse rec-
ommendations to each user. Specifically, we use an intent-aware metric called
BinomDiv [35] which measures the individual diversity also according to the
user interests covered in the recommendation list. The latter is a system-wise
property that measures the coverage of the items catalog and the distribution
of the items across the users. We thus considered two metrics: catalog coverage
(percentage of items recommended at least to once) and Entropy to analyze the
items distribution [4].
Baselines Models. Besides the graph-based and factorization-based models
presented in the previous section, we also evaluated a number of well-known
content-based and collaborative filtering methods, and one hybrid method that
integrates content similarity into user-based CF:

Popularity-based (POP). A non-personalized method that always rec-
ommends the most popular items not yet liked by the user.

Content-based (CB). A method that recommends the most similar items
to those in the user’s profile. We compute the similarity between items as the
cosine between their TF-IDF feature vectors, obtained from the semantically-
enriched item profiles.

User-based Nearest Neighbors (UNN). A method that estimates the
score of candidate item i for target user u by aggregating the preferences of
other similar users: r∗(u, i) =

∑
v∈N(u)∩U(i) sim(u, v). Here N(u) is the set of

u’s k most similar users, and U(i) the set of users that liked item i. For the
user-user similarity, we considered Jaccard’s coefficient between the sets I(u)
and I(v) of items liked by users u and v, respectively.

12



Item-based Nearest Neighbors (INN). A method that works similarly
to CB, with the difference that the item similarity is computed in a collab-
orative filtering fashion by exploiting the users’ interactions rather than the
items content. Specifically, we compute the score of item i for user u as
r∗(u, i) =

∑
j∈I(u) sim(i, j), where the item similarity is computed as the Jac-

card coefficient between sets U(i) and U(j).
Content-based Collaborative Filtering (HYB). A method that inte-

grates content information into the UNN approach by replacing the user simi-
larity component. In particular, we generate the TF-IDF profile vector for each
user by aggregating the content-based profile vectors of the user’s liked items,
computed as in the CB method. We compute the user-user similarities as the
cosine between their corresponding profile vectors, and utilize the same formula
as in UNN to compute the recommendation scores. Although the method relies
on content-based similarities, it still follows the CF paradigm by exploiting the
information from other users in the neighborhood.

Sparse Linear Methods (SLIM). This method is an implementation of
the SLIM algorithm [36] available in MyMediaLite8. SSLIM refers to SLIM with
side information [37].

5.1 Results

Table 1 shows the performance of the evaluated algorithms on the three domains
in terms of MRR and BinomDiv, while Table 2 shows the results in terms of
Catalog Coverage and Entropy, which together assess the aggregate diversity.

5.1.1 Books

Accuracy. PathRank achieves the best accuracy in the case of users with 1
and 2 likes; PathRank, UNN and HYB are the best methods with 3 likes; while
HeteRec is best method from 4 to 10 likes. It is worth to note that POP baseline
beats most of the methods except PathRank with 1 like, and also UNN and HYB
with 2 likes. SLIM and SSLIM seem not able to face the cold-start problem,
especially for users with less than 5 likes.
Individual Diversity. FMs provide the most diversified recommendations in
all the configurations, except in the case of users with only 1 like, for whom
UNN is better. Generally, POP, UNN and SLIM result close to FMs, while CB
provides always the worst diversity.
Aggregate Diversity. In terms of catalog coverage, SSLIM is the best method
with 1 like, INN with 2 likes, and CB for all the other sizes. Considering the
entropy, SSLIM is always the best method, closely followed by SLIM. In general,
CB, INN, SLIM and SSLIM provide the best values in term of both the two
metrics, respect to all the other evaluated methods. POP is obviously the worst
method, as it recommends only the most popular items.
Overall Analysis. We now discuss the results by considering accuracy, indi-
vidual and aggregate diversity together. None of the analyzed methods is able

8http://www.mymedialite.net
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to overcome all the others in terms of all the metrics. Analyzing MRR and
BinonDiv together, INN seems to achieve the best trade-off with almost all the
user profile size, followed by HeteRec from 5 to 10 likes. Analyzing MRR and
catalog coverage, INN and HeteRec provide the best trade-offs for all the profile
sizes, followed by SLIM and SSLIM. Considering the trade-off between MRR
and entropy, SLIM and SSLIM provide the best results, followed by INN and
HeteRec. Even though SLIM and SSLIM provide good catalog coverage and the
best entropy values, it is important to note that their recommendation accuracy
is very low for the majority of cold users (i.e., with less than 5 likes).

Summing up, graph-based methods obtain the best results in the books do-
main with best accuracy and good coverage, but in different situations: PathRank
is better with less likes (strong cold-start), and HeteRec overcomes it where
more likes are available (weak cold-start); they, however, provide less diversi-
fied list of recommendations (individual diversity) with respect to most of the
other methods. The three factorization-based models (IMF, CMF, FMs) are
not particularly effective in this domain. We also notice that using metadata
information leads to better recommendations. In particular, we can see that
HYB beats UNN in seven out of ten cases. Moreover, CMF gives the same im-
portance to user preferences and item metadata, obtaining the better accuracy
with the trade-off parameter γ = 0.5.

5.1.2 Movies

Accuracy. PathRank and UNN provide the most accurate recommendations
to users with 1 like, closely followed by HeteRec. Until 4 likes are available,
HeteRec yields the best performance. As more likes are observed, the HYB
method consistently outperforms the rest, closely followed by INN and UNN.
Regarding CMF and SLIM, we observe a similar behavior to the books domain.
CB is always the worst method, while SLIM and SSLIM are able to overcome
POP only in the case of users with more than 4 likes. On a side note, as
FMs beat IMF with few likes, item metadata results also valuable in MF-based
models, especially in the most cold-start situations (likes less than 5).
Individual Diversity. UNN provides the most diversified list of recommenda-
tions in almost all the configurations, followed by HYB, SLIM and SSLIM. CB
always results with the worst diversity, except for users with 1 like.
Aggregate Diversity. In terms of catalog coverage, SSLIM is again the best
method with 1 like, while in the other configurations CB overcomes all the other
methods, followed by SLIM, SLIM, INN. Recalling that POP should be always
the worst method in terms of coverage, we note that PathRank provides results
not significantly greater than POP, and is hence unable to cover the catalog.
Overall Analysis. Again, none of the analyzed methods arise as the best
solution for all the recommendation quality dimensions. Analyzing MRR and
BinonDiv together, UNN seems to obtain the best trade-off, followed by HYB;
while CB is always the worst choice. Among the factorization-based models,
IMF and FMs show very similar trends, while CMF provide slightly less di-
versified recommendation lists. The two graph-based methods, in contrast, are
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the most accurate methods for users with less than 5 likes, providing individual
diversity results on the average. Analyzing MRR and catalog coverage, INN
provides one of the best trade-offs between the two dimensions considering al-
most all the profile sizes. However, SLIM and SSLIM result the best choice for
users with more than 7 likes. Again, SLIM and SSLIM are the best methods
when MRR and entropy are considered together.

Once again we note that content information is especially beneficial in terms
of accuracy, while the other quality dimensions do not receive a particular im-
provement. We also observe that graph-based methods are better than the
MF-based approaches in terms of accuracy and individual diversity when very
few likes are observed, but they strongly penalize the aggregate diversity.

5.1.3 Music

Accuracy. As for movies domain, UNN provides the most accurate sugges-
tions for users with only 1 like. Then, FMs and CMF overcome almost all the
other methods in the other user profile size configurations. In particular, FMs
result the best approach from 2 to 6 likes, and CMF from 6 to 10. PathRank
seems to be still competitive in the extreme cold-start scenario (1 and 2 likes).
Therefore, we can confirm again that hybrid recommender systems are effec-
tive for generating accurate recommendations. In particular, we see that CMF
and FMs always overcome IMF, which only uses collaborative information, and
SLIM with side information (SSLIM) is better that SLIM.
Individual Diversity. In contrast to the other two domains, PathRank is able
to overcome all the other methods in terms of BinomDiv. FMs is the best choice
among the factorization-based methods, while IMF and CMF provide the less
diversified list of recommendations compared to all the other methods.
Aggregate Diversity. Again CB overcomes all the other methods in terms of
catalog coverage, except for the case of 1 like, where SLIM is still the best ap-
proach. SLIM follows CB from 2 to 10, while SSLIM and INN place themselves
down. Conversely, all the three factorization-based methods and PathRank
provide the lowest values of catalog coverage.
Overall Analysis. PathRank, UNN and FMs show the best trade-off between
MRR and BinonDiv from 1 to 5 likes; while SSLIM, UNN, and FMs seem
generally to be the best methods from 5 to 10 likes, except from 8 to 10 likes,
where SLIM provides the best trade-off. Analyzing MRR and catalog coverage
together, INN is again one of the best methods; when users have from 7 to 10
likes, SLIM results a good alternative to INN, with less accuracy but better
catalog coverage. Considering the trade-off between MRR and entropy, INN,
CMF, and IMF generally provide a good balance, in particular with the most
extreme cold-start scenarios. With more than 7 likes, SLIM and SSLIM deserve
to be taken into account, since they obtain very high entropy with slight loss of
accuracy.

We can conclude that matrix factorization models perform better in this
domain and are also able to exploit item metadata, since CMF and FMs beat
IMF in each configuration. In particular, CMF is able to adequately combine
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likes and item metadata. As the optimal trade-off parameter for CMF is 0.1
in this domain, this method gives more importance to the content information
as opposed to user preferences, demonstrating that metadata is valuable in the
cold-start scenario.

6 Conclusions

Providing relevant suggestions of items for cold-start users is a well-known prob-
lem in recommender systems. In this paper we conducted a comparison of dif-
ferent hybrid recommendation approaches that jointly exploit user ratings and
semantic item metadata extracted from DBpedia. Specifically, we evaluated a
number of graph-based and matrix factorization algorithms in the top-N rec-
ommendation task with positive-only feedback, using a Facebook likes dataset
covering three distinct domains —namely books, movies and music— in terms
of not just accuracy, but also regarding individual and aggregate diversity. The
achieved results shown that by exploiting semantic information about the items,
the models are able to provide relevant recommendations even for users with
very few likes, hence addressing the cold-start problem, while diversity does not
always benefit from the integration of semantic information into the hybrid ap-
proaches. In the books domain, the analyzed graph-based models were generally
more effective compared to the factorization-based models and baselines. In the
movies domain, graph-based models provided better results than factorization-
based models particularly in extreme cold-start situations, while no relevant
differences emerged for moderate cold-start users. Finally, factorization-based
models were the best approaches in the music domain in almost all the cold-start
scenarios.
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