
Querying Deep Web Data Sources as Linked Data
Vito W. Anelli

SisInf Lab, Politecnico di Bari
vitowalter.anelli@poliba.it

Vito Bellini
SisInf Lab, Politecnico di Bari

vito.bellini@poliba.it

Andrea Calí
DCSIS, Birkbeck, Univ. of London
and Oxford-Man, Oxford Univ.

andrea@dcs.bbk.ac.uk

Giuseppe De Santis
SisInf Lab, Politecnico di Bari
g.desantis6@studenti.poliba.it

Tommaso di Noia
SisInf Lab, Politecnico di Bari
tommaso.dinoia@poliba.it

Eugenio di Sciascio
SisInf Lab, Politecnico di Bari
eugenio.disciascio@poliba.it

ABSTRACT
The Deep Web is constituted by dynamically generated pages, usu-
ally requested through HTML forms; it is notoriously difficult to
query and to search, as its pages are obviously non-indexable. Re-
cently, Deep Web data have been made accessible through RESTful
services that return information usually structured in JSON or XML
format. We propose techniques to make the Deep Web available
in the Linked Data Cloud, and we study algorithms for processing
queries posed in a transparent way on the Linked Data, providing
answers based on the underlying Deep Web sources. We present a
software prototype that exposes RESTful services as Linked Data
datasets thus allowing a smoother semantic integration of different
structured information sources in a global data and knowledge
space.

CCS CONCEPTS
• Information systems → Information integration; Media-
tors and data integration; RESTful web services; Query lan-
guages for non-relational engines; Federated databases;
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1 INTRODUCTION
In the last years the Web has changed from a huge collection of
unstructured textual documents to a vast repository containing a
large amount of structured data. Structured data are often available
as Deep Web sources, that is, as databases that can be queried
through a Web interface, normally an HTML form. New ways
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of exposing structured data have recently emerged, which allow
the composition of services for the creation of new integrated
applications (mash-ups [14]) and knowledge spaces. Among the
various technical proposals and approaches for data publication on
the Web which survived to the present days, the two most relevant
ones are: RESTful services [9] and Linked Data (LD) [3]. RESTful
services provide an agile way of exposing data in a request/response
fashion over HTTP, and has been widely adopted by programmers
thanks to its easiness of implementation. In this context, data are
usually returned in XML or JSON documents after the invocation
of a service. Among the issues related to the pure RESTful approach
we mention the following:

• There is no explicit semantics attached to the returned data1.
• There is no unique query language to invoke services. Each
service exposes its own API, and APIs considerably differ
from each other even when they refer to the same knowledge
domain,
• The integration of different data sources is difficult and is
often implemented ad-hoc.

On the other hand, the Linked Data approach is based on the idea
that data can be delivered on the Web together with their explicit
semantics, expressed by means of common vocabularies. Following
the Linked Data principles2, datasets should be made accessible
through a SPARQL endpoint. Moreover, by using federated queries3
an agent is able to automatically integrate data coming from differ-
ent sources thus creating a data space at a Web scale. Unfortunately,
also the Linked Data approach comes with its drawbacks, among
which we may mention:

• The effort in setting up a SPARQL endpoint is bigger than
that of adopting a RESTful approach from service providers.
Normally it is much easier to find a JSON-based service than
a LD-based one.
• Programmers are usually more familiar with JSON services
than with SPARQL endpoints.
• Service providers are usually not interested in exposing all
the data they have; instead, they normally want to expose
only a small portion of their data.

Based on the above points we can see that, while from the practical
point of view the RESTful approach is the most efficient, if we look

1Actually, with JSON-LD this issue could be solved but this format is not widely
adopted yet.
2https://www.w3.org/DesignIssues/LinkedData.html
3https://www.w3.org/TR/sparql11-federated-query/
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at the knowledge point of view the Linked Data paradigm represents
a more suitable solution.

Following the above observations, we built the PoLDo prototype
system, which is able to export existing RESTful services, even
third-party ones, as a SPARQL endpoint, thus making the under-
lying Deep Data sources part of the Linked Data cloud. Thanks
to a configurable query planner, PoLDo is able to break down a
SPARQL query into a sequence of RESTful service invocations and
to orchestrate different services to provide a correct answer to the
posed query. Starting from the data it retrieves from services, PoLDo
builds a temporary RDF dataset used to compute the result set for
the original SPARQL query.

The remainder of the paper is organized as follows. In the next
section we report on some relevant related work on accessing the
Deep Web; Section 3 illustrates the problem of querying Deep
Web data. In Section 4 we give an overview of the PoLDo system.
Section 5 concludes the paper.

2 RELATEDWORK
The Deep Web (also known as Hidden Web) [6, 8, 12] is constituted
by structured data that are available as dynamically generated Web
pages, generated upon queries usually posed through HTML forms.
The Deep Web content cannot be indexed by search engines and
is therefore not easy to search or access. Deep Web sources are
naturally modeled as relational tables that can be queried only
according to so-called access patterns (or access limitations); more
specifically, certain attributes are to be selected in the query in
order to get an answer — such a selection corresponds to filling the
corresponding attribute in the form with a value. The Deep Web is
therefore separate from the so-called Surface Web, the latter being
the set of ordinary, static Web pages. It is also known that the Deep
Web is orders of magnitude larger than the Surface Web [11]. Deep
Web data are normally structured and of great value; however, the
limitations in accessing them make them hard to search and query.

Integrating Deep Web sources as a single database poses several
challenges. Normally in this approach, which allows for processing
structured queries [6] as well as keyword queries [7], sources are
federated into a single schema. Normally, in this approach one deals
with known sources, which contain data related to a single domain
of interest. Processing structured query over federated Deep Web
sources allows for the integration of such sources. The problem
of query processing in this context poses several challenges due
to the access limitations on the underlying sources. Answering
a simple conjunctive (select-project-join) query on such sources
requires, in general, the evaluation of a recursive Datalog query.
Given that Deep Web sources, for their own nature, are normally
rather slow in responding, it is crucial to minimize the number of
accesses while processing a query.

In some cases onewants to pose keyword queries on a set of Deep
Web sources; while the problem of keyword search on traditional
relation databases has been studied in the literature (see e.g., [1,
10]), in the context of the Deep Web the same problem gets more
complicated and require a suitable notion of answer to keyword
queries as well as algorithms [7].

When searches need to be posed on the whole Web, including
the Deep Web, the most common approach is Surfacing [12], that is,

pre-computin answers from Deep Web sources by posing suitable
queries, and indexing the results as static pages in a search engine.

Over the years, there have been many attempts in bridging the
gap between Linked Data and RESTful services. The intuition that
the two worlds are strongly connected is not new [13] and led also
to the development of the Linked Data Platform4 definition. Most
of these works [2, 15, 16] focused mainly on how to describe a
RESTful service in order to explicitly expose information about
the data it may provide. To the best of our knowledge, PoLDo is
the first attempt in exposing an orchestration of RESTful service
through a SPARQL endpoint thus making possible the integration
of more data coming from different and heterogeneous datasets via
federated queries.

3 QUERYING DATA UNDER ACCESS
LIMITATIONS

In this work we focus on RESTful services which can be modeled
as relational tables with access limitations [4]. In fact, a RESTful
service relates input data encoded in the query with output data
usually returned as JSON or XML documents. In this respect, it
results quite natural to adopt a relational approach to model the
service where we have some attributes mapped to input parameters
and others to outputs.

The relational model is basically constituted by two different sets
of symbols: predicates and constants. Predicates denote the relations
expressed in the database and constants are the values involved in
the relations. Constant symbols belong to a fixed set Γ under the
unique name assumption and a relational schema C is defined by
an alphabet Γ of predicate symbols and a set of integrity constraints.
Each predicate symbol has an arity associated, which denotes the
number of attributes of the relation. An integrity constraint is an
assertion on predicates symbols that must be satisfied on every
database coherent with the schema. A relational database DB is
a set of relations with values in Γ and with at least one relation
rDB of arity n for each predicate symbol r ∈ Γ of arity n. This
functional relation can be interpreted as DB is an instance of the
schema C. This means thatDB contains facts (relations and related
values) that make true the corresponding predicate symbols in C
with respect to a specific interpretation function. A relational query
q specifies a set of tuples to retrieve from DB. One of the most
relevant query class is that of conjunctive queries, in which a query
q of arity n can be expressed as

q(x1, . . . ,xn ) ← conj (x1, . . . ,xn ,y1, . . . ,ym )

where conj (x1, . . . ,xn ,y1, . . . ,ym ) is a conjunction of first-order
atomic formulas involving n +m variables and an arbitrary set
of constants in Γ. The answer a to the query q consists of a set
of constant tuples (c1, . . . , cn ) of arity n such that when mapping
xk 7→ ck , with k = (1, . . . ,n), the formula

∃y1, . . . ,ym conj (x1, . . . ,xn ,y1, . . . ,ym )[xk 7→ ck ]

results true in DB.
When dealing with databases with access limitations the re-

lations can be expressed using the proper access modes. In the
case of RESTful services we have the two access mode i and o

4https://www.w3.org/TR/ldp/

https://www.w3.org/TR/ldp/
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(for input and output respectively) stating that for all the tuples
r (c1, . . . , cn ) ∈ DB we have some of the arguments of r mapped to
the inputs of the service and some to its outputs. Following [5], we
denote access modes as superscript of the relation. As an example,
a simple service can be expressed by a relation r1 as:

roio1 (c1, c2, c3)

in which c2 is an input parameter and c1 and c3 are output parame-
ters. Access limitation may affect the computation of the result of a
query as all the constants (c1, . . . , cn ) may be not accessible at the
same time. Consider the conjunctive query q1 defined as

q1 (x ) ← roio1 (y, c1,x ), r
ioo
2 (x , c2, z)

This query can be solved by executing from left to right the services
corresponding to the relations r1 and r2. Indeed, we have that by
invoking the first service with input c1 we obtains a set of pairs
of constants (cy , cx ) as output instantiating y and x respectively,
meaning that r1 (cy , c1, cx ) ∈ DB . For each pair, cx is then used
to execute the second service corresponding to r2 thus obtaining
as output the new set of pairs (ck , cz ). Among these pairs we are
interested only in those such that ck = c2. So this kind of query
is executable and retrieves a complete answer which contains all
the possible solutions to the query over DB. It is noteworthy [5]
that if the query is not executable, in some cases it can be executed
reordering the subgoals. This kind of queries are called feasible(or
orderable). Feasible queries return the complete answer to the query.
If we had the relation r3 defined as roio3 (c1, c2, c3) and a query
q2 (A) ← roio1 (t , c1,x ), r ioo2 (x , c2, z), roio3 (t ,u,y) we could have a
problem. The relation r3 has as input parameter a variable and
there is no way that variable can be set because u is not present
in other subgoals. In this case we added artificially r3, then we
know that r3 is not needed to answer the query because it can not
affect the result set of the Variable x ; hence it exists a subset of
the subgoals that is not useful or redundant and without them the
query is feasible, or better. This kind of queries are called stable.

If we exclude all the previous cases, the chance to retrieve the
complete answer is no more guaranteed. The set of retrieved an-
swers is usually only a subset of the complete answer and we refer
to it as maximal answer set or reachable certain answer set. In
general a recursive query plan is needed to retrieve the maximal
answer set and this may result in a very expensive process.

From a practical point of view, if we know the domain of each in-
put parameter and output result we may preselect possible constant
values to invoke services. This is an important aspect of retrieving
information in the Deep Web because the complete set of constants
for a specific argument of a relation is usually unknown. By identi-
fying the abstract domains of the arguments (attributes) the domain
knowledge is increased and more input constants are available to
retrieve information from the services thus resulting in a more
complete answer.

3.1 Querying the Deep Web with SPARQL
The goal of this work is to express queries using a semantic language
as SPARQL being agnostic with respect to the original deep web
source. A SPARQL query, in details, tries to find the graph patterns
in the underlying data that match to the query. The knowledge base
is expressed in a standard W3C language, such as RDF. The atomic

informational element of an RDF knowledge base is a triple. A triple
is a ternary relation in which the three arguments can be digested
to subject, predicate and object. The constant symbols that can be
used in the relation are IRIs (I) and Literals (L) with the exception
of predicates, in which only IRIs are allowed. An RDF database
DBRDF is a set of triple with values in Γ. This functional relation
can be intended as DBRDF is an interpretation of the underlying
RDF schema.

The query language SPARQL extends triples with the introduc-
tion of variables (V) and constitutes patterns. The simple triple
corresponds to the most elementar graph pattern (tp), formally
defined as (I ∪ L ∪V ) × (I ∪V ) × (I ∪ L ∪V ). A generic SPARQL
query (sq) can be expressed as

sq(x1, ...,xn ) ← π(x1, ...,xn )sops (x1, ...,xn ,y1, ...,ym ,C1, ...,Cp )

where sops (x1, ...,xn ,y1, ...,ym ,C1, ...,Cp ) is a set of sets of triples
resulted from the application of SPARQL operators among graph
patterns that involve n +m variables and p constants. The answer
sa to the query sq consists of a set of relations of arity n that makes
true the formula over DBRDF . π(x1, ...,xn ) corresponds to the
projection of each set of triples restricting the relation to a subset
of the attributes.

In this scenario we want to achieve two main goals: the maximal
answer set of a deep web source should be reformulated as an
RDF knowledge base (DBRDF ) and the sparql query have to be
translated in a appropriate sequence of queries over DB. These
two distinct operations must provide a vocabulary to query the
knowledge base and a set of automatic operations with the purpose
of populating themaximal answer set and hence the RDF knowledge
base. Mapping answers (mapans ) of queries overDB to triples can
be considered a simple but not trivial operation. In particular each
deep web query q can be mapped to a triples set trset

q(x1, ...,xn ) → trset (x1, ...,xk ,C1, ...,Cp )

where the triples set trset involve k constants from the answer
set (with k ≤ n) and p new constants. Populating DBRDF opera-
tion, conversely, needs to be explained in details. Recently, many
optimizations to a query planner for deep web sources were pro-
posed and each of them tries to find the best sequence of executable
queries. In a real-world scenario, where data sources have access
limitation, only queries where input parameters are known can be
executed. It is straightforward that the identification of the abstract
domains is crucial. Once the abstract domains are known, state of
the art planners can do the job. The system needs to analyze the
query looking for a subset of triple patterns that can fulfill the in-
put parameters of a query q1. More formally, a translation mapr eq
should exist for the query q1 that expresses the input parameters
abstract domains in terms of triples

qio ...o1 (A,x1, ...,xn ) ← trset (A,AD1,y1, ...,ym ,C1, ...,Cp )

that contains a constant (A) for each input parameter associated
with the appropriate abstract domain (AD1), m variables and p
constants.
In order to identify the appropriate abstract domain a formulation
of q1 in terms of abstract domains is needed.

qio ...o1 (AD1, ...,ADn )
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The number of possible mappingsmapr eq for each query is poten-
tially infinite since the way constants can be semantically associated
with their abstract domains is arbitrary. In this work, we limit our
modeling to two very representative types.
Type A. The input constant symbol is expressed as object of the
predicate <http://www.w3.org/2000/01/rdf-schema#label> and
an explicit membership to an abstract domain is provided through
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> pred-
icate. Thematching graph patternwill be {?s rdfs:label [RDFLiteral
| NumericLiteral | BooleanLiteral] . ?s rdf:type [iri |
RDFLiteral]} where RDFLiteral, NumericLiteral, BooleanLiteral
and iri are the EBNF terms from SPARQL 1.1 syntax. As we said
before, a formulation of q in terms of abstract domains is needed, in
particular the abstract domain for input1 of query q will be mapped
as {input1 rdf:type [iri | RDFLiteral]. } in the mapping
knowledge base.
In order to provide an example, wewant tomap a queryqio2 to a deep
web source in which the input argument is a place and the output
parameter corresponds to real time temperature value. A possible
mapping for the input parameter is {input1 a dbo:Place . }
This means that, if there is a subset of the graph patterns of a
SPARQL query sq2 that matches with the mapped graph pattern
{?s rdfs:label "Bratislava" . ?s rdf:type dbo:Place }
the query q2 can be executed with the input constant Bratislava.
Type B. The input constant symbol is expressed as an object of
a particularly defined predicate. The matching graph pattern is then
{?s [iri] [RDFLiteral | NumericLiteral | BooleanLiteral] .}
while the formulation of query in terms of abstract domains will be
{input1 a owl:DatatypeProperty; owl:samePropertyAs [iri]. }
where the abstract domain is not explicitly defined and the mem-
bership to the appropriate abstract domain can be inferred by
the usage of the defined iri as predicate. As an example, we
want to map a query qio2 to a deep web source in which the in-
put argument is a latitude and the output parameter corresponds
to places associated to that specific latitude. A possible mapping
for the input parameter would be represented by the RDF triples
{input1 a owl:DatatypeProperty; owl:samePropertyAs
wgs84:lat. } . As before, if there is a subset of the graph patterns
of a SPARQL query sq2 that matches with the mapped graph pattern,
like {?s wgs84:lat "41.00" .} the query q2 can be executed
with the input constant 41.00.

4 POLDO
The high level architecture of PoLDo is represented in Figure 1. The
engine is responsible of getting the SPARQL query and breaking
it down to a sequence of RESTful calls to a remote service. The
transformation is made possible thanks to a mapping file that maps
Linked Data URIs to the elements of the signature of the remote
call. While querying the remote service, PoLDo feeds an RDF local
triple store (Jena Fuseki in its current implementation) which is in
charge of processing the actual SPARQL query. More in details, we
have:

PoLDo engine It receives the SPARQL query and extracts all
the constants from the graph template in the WHERE clause.
Then, by using the algorithm in [6], it uses the constants to
query the external service and to get the data that will be

Figure 1: A high level view for the architecture of PoLDo

used to create a local RDF representation of the data space.
Thanks to the information encoded in the PoLDo mapping
file, the engine is able to feed a local repository of RDF triples.
The engine is also capable to exploit external services to get
extracted resources’ URI from mapped API services, that
often return data related to the resource but not the URI.

Jena The Jena Model is used to save a LD version of the data
which are incrementally retrieved from the RESTful service.
The availability of a third-party RDFmodel makes PoLDo able
to support the full specification of SPARQL query language.
Furthermore, it is able to return the data in all the formats
supported by the query engine Jena ARQ.

PoLDoMapping Generator It is responsible for the genera-
tion of the mapping file. Given a RESTful service, it works
in four steps. It analyzes request (HTTP GET) and response
(JSON or XML) given to and by a web service, then extracts
all the inputs and outputs. A user is then allowed to man-
ually assign a class of membership to resources. The Map-
ping Generator queries the ontologies (DBpedia and LOV)
through the predicates rdfs:domain and rdfs:range and
recommend all possible predicates that would link resources.
Hence, when the recommended predicates have been ac-
cepted, the final mapping file is generated and can to be
consumed by the engine.

PoLDomapping file This file contains information about how
to map the URIs of the SPARQL query to inputs and out-
puts of the service. Moreover, it also describes the entities
represented by inputs and outputs as well as their mutual
relations.

4.1 PoLDomapping language and RDF
PoLDo mapping file allows the designer to create a link between
URIs contained in the SPARQL queries processed by the engine and,
at the same time, to enrich their semantics by explicitly adding in-
formation about the corresponding OWL class or property that can
be defined also in an external vocabulary (e.g. DBpedia). Mapping
rules can also be created to describe RDF triples containing informa-
tion on how to relate values of an input parameter with the outputs
of the service invocation. All the rules contained in the PoLDo map-
ping file are, in turn, represented as RDF triples which refers to
a corresponding RDF-S ontology. The main element of the PoLDo
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ontology is the class poldo:Service (see Fig. 2). It describes each

Figure 2: The class poldo:Service in the PoLDo mapping on-
tology.

service in terms of its base URL (poldo:hasUrl), the HTTP method
GET or POST (poldo:hasMethod), the language of the answer to
the service call, e.g. XML or JSON (poldo:hasLanguage) and its
inputs and outputs (poldo:hasInput and poldo:hasOutput). The
ontological description of poldo:Input and poldo:Output are rep-
resented respectively in Fig. 3 and Fig. 4. As we can see, both inputs

Figure 3: The class poldo:Input in the PoLDomapping ontol-
ogy.

Figure 4: The class poldo:Output in the PoLDo mapping on-
tology.

and outputs of a services can be mapped as instances of a class
or as a property. Indeed, especially when the type of the corre-
sponding value is different from a string, we may have cases when

the parameter is better represented by a property rather than the
subject or object of a triple. We may think at a geographical service
returning places based on their coordinates. In this case, coordi-
nates are better mapped to the properties geo:lat and geo:long
of the Basic Geo vocabulary5. The modeling of poldo:Input and
poldo:Output classes try to catch all possible cases in the descrip-
tion of the inputs and outputs of a service. For instance, the param-
eter poldo:hasFixedValue is used when we need a key to access
the RESTful service. As for poldo:Output we just highlight that it
is possible to model the situation when the service returns a single
value or a list of values by means of the poldo:hasStructure and
rdf:li statements.

4.2 PoLDomapping generator
In this paragraph we describe all the steps required to extract pa-
rameters from an external Web Service request. These parameters
form a query string, which is composed by pairs of name-value
that are in the URL of an HTTP GET. Given a URL in a HTTP GET
request, the starting location of all the pairs name-value is found
after the special character ?. We can now extract all the parameters
and split name and values with the character =. Found parameters,
that represent input resources of the Web Service, are then used
to populate the mapping file. When all the inputs have been iden-
tified, the generator will start to identify output resources from
responses provided by the service itself. As responses are often in
XML or JSON format, two different methods are implemented in
PoLDo to handle them. After input and output have been mapped,
it is possibile to assign for each resource its membership class. Gen-
erator will recommend all possible predicates to link resources,
using rdfs:domain and rdfs:range and querying ontologies such
as DBpedia and LOV. In the next phase, recommended predicates
are accepted or edited. It either possible to add new predicates. The
final mapping file can now be generated and deployed.

4.3 PoLDo engine
The core component of PoLDo is its query planner. It uses the
algorithm presented in [6] to iteratively query the RESTful services
and build a local cache containing the RDF version of the data. The
transformations performed follow the rules available in the PoLDo
mapping file. For a better understanding of the overall approach, we
now describe how PoLDo engine works by means of an exhaustive
example which uses the data returned by the flutrack RESTful
service. It detects in real time influenza symptoms, using Twitter.

service input output
http://api.flutrack.org limit, keyword, time latitude, longitude

Given keyword, limit and time, the service returns the latitude
and longitude of the tweet’s origin IP. The corresponding mapping
file will then contain the following triples6:
poldo:api-flutrack-org- a poldo:Service ;

poldo:hasInput poldo:api-flutrack-org--input3 ,
poldo:api-flutrack-org--input2 ,
poldo:api-flutrack-org--input1 ;

poldo:hasLanguage "json" ;
poldo:hasOutput poldo:api-flutrack-org--output1 ;
poldo:hasUrl <http://api.flutrack.org/> .

5https://www.w3.org/2003/01/geo/
6The prefix we use in the triples are those available via http://prefix.cc

https://www.w3.org/2003/01/geo/
http://prefix.cc
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poldo:api-flutrack-org--input1
a poldo:api-flutrack-org--input1key ;
poldo:hasFixedValue "100" ;
poldo:isRequired true ;
poldo:paramName "limit" .

poldo:api-flutrack-org--input2
a dbo:Disease ;
poldo:isRequired true ;
poldo:paramName "s" ;
dbo:location poldo:api-flutrack-org--resource1 .

...
poldo:api-flutrack-org--output1

a rdf:Bag ;
rdf:li poldo:api-flutrack-org--output5 ,

poldo:api-flutrack-org--output4 ,
poldo:api-flutrack-org--output6 ,
poldo:api-flutrack-org--output3 ,
poldo:api-flutrack-org--output7 ,
poldo:api-flutrack-org--output2 ;

rdfs:label "jsonArrayRoot" ;
poldo:hasStructure "JSON_Array" ;
poldo:isRelatedToService poldo:api-flutrack-org- .

poldo:api-flutrack-org--output4
a owl:DatatypeProperty ;
rdfs:label "latitude" ;
poldo:content "String" ;
poldo:hasStructure "JSON_Data" ;
poldo:isData true ;
poldo:isRelatedToService poldo:api-flutrack-org- ;
owl:samePropertyAs geo:lat> .

poldo:api-flutrack-org--output5
a owl:DatatypeProperty ;
rdfs:label "longitude" ;
poldo:content "String" ;
poldo:hasStructure "JSON_Data" ;
poldo:isData true ;
poldo:isRelatedToService poldo:api-flutrack-org- ;
owl:samePropertyAs geo:long .

...
poldo:api-flutrack-org--resource1

a poldo:customResource ;
poldo:api-flutrack-org--output4 xsd:double ;
poldo:api-flutrack-org--output5 xsd:double ;

poldo:findURI "poldo.GeocodeURI".

The first entity defined is the service itself, together with the ser-
vice output language and the URL of its the endpoint. The mapping
file shows how inputs and outputs are defined. Two of the three
inputs (limit and time) corresponding to input1 and input3 are
set to fixed values (100 and 7) while the keyword (parameter s) is
defined as a dbo:Disease. This corresponds to Type A mapping
style. The engine analyzes the query to find graph patterns such
as: {?disease a <http://dbpedia.org/ontology/Disease> .
?disease <http://www.w3.org/2000/01/rdf-schema#label> [
RDFLiteral | NumericLiteral | BooleanLiteral ] .} . In
this specific case a possible instantiation of the previous graph pat-
tern is {?disease a <http://dbpedia.org/ontology/Disease>
. ?disease <http://www.w3.org/2000/01/rdf-schema#label>
"fever" .}

The engine recognize the pattern and poldo:api-flutrack-org-
service is invoked. The mapping shows us the expected result: a
JSON array associated to the object jsonArrayRoot. In this ar-
ray, we can find five outputs that we can deal with as an RDF list.
output4 and output5, in particular, are latitude and longitude of
the tweet and they are defined by following the Type B style. This
mapping example provides an interesting feature, the definition

of poldo:api-flutrack-org--resource1, a new resource gener-
ated by composing the informations from output4 and output5
and executing a custom function. In this case, we realized a look-up
service that, given latitude and longitude, it calls Geocode.xyz and
DBpedia Lookup and then it returns the corresponding DBpedia
resource.

Now suppose we want to know the cities with more than 1M
inhabitants in which fever symptoms were reported on Twitter.
The information we get just form the service is not sufficient to
answer the query but as it can now be queried through SPARQL 1.1,
a federated query is now feasible:
SELECT ?place
WHERE {

?disease a dbo:Disease .
?disease rdfs:label "fever" .
?disease dbo:location ?place .

SERVICE <http://dbpedia.org/sparql> {
?place rdf:type dbo:Place ;

dbo:populationTotal ?population .
FILTER (?population > 1000000).

}
}

PoLDo engine also supports more services in the same mapping
file. In this scenario, by using the outputs (constants) of the first
invoked service, the engine queries the second service (by checking
the abstract domains) and, if the remote call returns some results,
these are added to the knowledge base. In this case the engine uses
the constants returned by the second service to query again the
first one thus continuing its search of the answer for the original
SPARQL query. PoLDo engine stops querying the original services
in the following cases: (i) the answer to the query is found; (ii) there
are no more fresh constants and then the answer to the original
query can not be found; (iii) the execution time exceeds a timeout
set by the designer. If we consider the previous SPARQL query, the
answer to the query can be found, hence the following results are
returned.

place population
http://dbpedia.org/resource/Chennai 7088000
http://dbpedia.org/resource/Melbourne 4440000
http://dbpedia.org/resource/Kolkata 4496694
http://dbpedia.org/resource/Dubai 2459068
http://dbpedia.org/resource/Birmingham 1101360
http://dbpedia.org/resource/London 8538689
http://dbpedia.org/resource/Brooklyn 2621793
http://dbpedia.org/resource/New_York_City 8491079
http://dbpedia.org/resource/Varanasi 1201815
http://dbpedia.org/resource/Philadelphia 1560297
http://dbpedia.org/resource/Dallas 1197816
http://dbpedia.org/resource/Miyazaki_Prefecture 1128412
http://dbpedia.org/resource/Singapore 5535000
http://dbpedia.org/resource/Tokyo 13506607

5 CONCLUSION AND FUTUREWORK
In this paper we presented PoLDo, a system prototype that acts as
a middleware between a RESTful service and SPARQL endpoint.
By means of PoLDo we are allowed to expose the Deep Web data
available via RESTful services as Linked Data that can be easily
integrated in the so called Linked Data Cloud. The tool we devel-
oped adopts algorithms and techniques coming from the Deep Web
literature to make possible the composition of services at a data
level. Via a mapping file, PoLDo is able to interpret a SPARQL query
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in terms of a sequence of remote calls to external services and to
translate the returned data in a temporary RDF graph which is
locally stored in a triple store. The approach we developed is for
sure a step forward the creation of a global, semantics-enabled, in-
tegrated, gigantic data graph as in the original view of the Semantic
Web.
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