
Large Scale Skill Matching through Knowledge
Compilation

Eufemia Tinelli1, Simona Colucci2, Silvia Giannini1, Eugenio Di Sciascio1, Francesco
M. Donini2

1 SisInfLab, Politecnico di Bari, Bari, Italy
2 DISUCOM, Universit̀a della Tuscia, Viterbo, Italy

Abstract. We present a logic-based framework for automated skill matching,
able to return a ranked referral list and the related ranking explanation.Thanks to
a Knowledge Compilation approach, a knowledge base in Description Logics is
translated into a relational database, without loss of information. Skill matching
inference services are then efficiently executed via SQL queries. Experimental
results for scalability and turnaround times on large scale data sets are reported,
confirming the validity of the approach.

1 Introduction

We present a logic-based framework for automated skill matching, which combines
the advantages of both semantic-based and database technologies through a Knowledge
Compilation [2] approach. Coherently with it, our contribution makes computationally
efficient the skill matching execution over the informationcontained in the Knowledge
Base (KB) – modeling intellectual capital according to the formalism of Description
Logics (DLs) – by splitting the reasoning process in two phases:(i) off-line reasoning
- the KB is pre-processed and stored in a relational database; (ii) on-line reasoning-
skill matching is performed by querying the data structure coming from the first phase.
Other distinguishing features of the approach include the addition of a fully explained
semantic-based comparison between the job request and the retrieved candidates as well
as the possibility to express both strict requirements and preferences in the job request.
Coherently with this perspective, our approach provides a two-steps matchmaking [5,
8] process:Strict Matchretrieves candidates fully satisfying all the strict requirements;
Soft Matchimplements an approximate match by retrieving candidates fully or partially
satisfying at least one user preference.

The approach has been implemented inI.M.P.A.K.T. , an integrated system for
automated HR management that provides team composition services [14, 6] and Core
Competence extraction [7] (an embryonicI.M.P.A.K.T. version of the retrieval of
candidates ranked referral lists has been presented in [13]).

Among the few semantic-based implemented solutions for HR management, one of
the first ones is –to the best of our knowledge – STAIRS3, a system still used at US Navy
Department to retrieve referral lists of best qualified candidates w.r.t. a specific task. We

3
http://www.hrojax.navy.mil/forms/selectguide.doc



may also cite products offered by Sovren4, which provide solutions for both CV and job
requests parsing starting from several text formats to HR-XML schema. Recently, also
Monster.com(R), the leading Web job-matching engine, introduced theMonster Power
Resume SearchTM service5. The product relies on the semantic6Sense(TM) search
technology, patented by Monster Worldwide, Inc. . All the previous solutions exploit
the semantics of queries– and are able to distinguish between essential and nice-to-have
skills– to perform the search process but no ranking explanation is returned. On the
other hand, several approaches have been presented, where databases allow users and
applications to access both ontologies and other structured data in a seamless way. Das
et al. [4] developed a system that stores OWL-Lite and OWL-DL ontologies in Oracle
RDBMSs, and provides a set of SQL operators for ontology-based matching. The most
popular OWL storage is the recent OWLIM [11], a Sesame plug-in able to add a robust
support for the semantics of RDFS, OWL Horst and OWL2 RL. Other systems using
RDBMS to deal with large amounts of data areQuOnto6 andOWLgres7, both DL-Lite
reasoners providing consistency checking and conjunctivequery services. SHER [9] is
a highly-scalable OWL reasoner performing both membership and conjunctive query
answering over large relational datasets using ontologiesmodeled in a subset of OWL-
DL without nominals. PelletDB8 provides an OWL 2 reasoning system specifically
built for enterprise semantic applications. Although all the previous approaches support
languages more expressive than the one we use in our system, they are only able to
return either exact matches (i.e., instance retrieval) or general query answering. Instead,
we use an enriched relational schema to deal with non-standard inferences and provide
effective value-added services.

The rest of this paper is organized as follows. In the next section, the modeling ap-
proach translating the KB into the reference relational database is presented. Section 3
introduces the implemented services and Section 4 reports on an experimental evalua-
tion using PostgreSQL 9.1 DBMS showing the effectiveness and the scalability of the
proposal. Conclusions and future research directions close the paper.

2 Knowledge Compilation

I.M.P.A.K.T. receives all the information needed to model and manage the domain
of human resources from a specifically developed modular ontologyT = {Mi|0 ≤ i ≤
6}, currently including nearly 5000 concepts. Each ontology moduleMi is modeled
according to the formalism ofFL0(D) subset of DLs. In particular, everyMi may
include the following items:i) a class hierarchy;ii) n optional propertiesRi

j , 1 ≤ j ≤ n,
defined over the classes specifying the module hierarchy;iii) optional concrete features
pi, either in the natural numbers or in the calendar dates domain.

Hereafter, we shortly describe the content modeled in each ontology module:Level
models the hierarchy of candidate education and training levels;ComplementarySkill

4
http://www.sovren.com/default.aspx

5
http://hiring.monster.com/recruitment/Resume-Search -Database.aspx

6
http://www.dis.uniroma1.it/ ˜ quonto/

7
http://pellet.owldl.com/owlgres/

8
http://clarkparsia.com/pelletdb/



models the class hierarchy about complementary attitudes;Industry models the hi-
erarchy of company types a candidate may have worked for;Knowledge models the
hierarchy of possible candidate competence and technical tools usage ability and the
related experience role (e.g., developer, administrator, and so on) exploiting thetype
property;JobTitlemodels the hierarchy of possible job positions;Languagemod-
els the hierarchy of possible languages known by the candidate and provides three con-
crete features for expressing the related level (verbalLevel , readingLevel and
writingLevel ). Finally, modulesIndustry , ComplementarySkill , Knowledge
andJobTitle provide also two predicates:year , to specify the experience level in
years, andlastdate , which represents the last temporal update of work experience.
M0 is the main ontology module: it includes all the previous modules and models a
property (calledentry point) for each imported sub-module.

Thanks to the knowledge modeling outlined so far, it is possible to describeCV
Profiles in the ABox. The CV classification approach we propose is based on a role-
free ABox, which includes only concept assertions of the form P (a), stating that the
candidatea (i.e., her CV description) offers profile featuresP (see Definition 1).

Definition 1 (Profile). Given the skill ontologyT , a profile P = ⊓(∃R0
j .C) is a

ALE(D) concept defined as a conjunction of existential quantifications, whereR0
j ,

1 ≤ j ≤ 6, is an entry point andC is a concept inFL0(D) modeled in the ontol-
ogy moduleMj .

As hinted before, our knowledge compilation approach aims at translating the skill
knowledge base into a relational model, without loss of information and expressiveness,
in order to reduce on-line reasoning time. Relational schema modeling is therefore the
most crucial design issue and it is strongly dependent on both knowledge expressiveness
to be stored and reasoning to be provided over such a knowledge base. We recall that
FL0(D) concepts can be normalized according to theConcept-Centered Normal Form
(CCNF), [1, Ch.2]. The availability of a finite normal form turns out to be very useful
and effective, since all non-standard reasoning services performed byI.M.P.A.K.T.
process the atomic information making up the knowledge descriptions, rather than the
concept as a whole. Thus, we map the KB to the database according to the following
design rules:
1) a table CONCEPT is created to store all the atomic information managed by the
system: i) concept and role names; ii) the CCNF atoms of all the FL0(D) concepts
defined in modulesMj , with 1 ≤ j ≤ 6; 2) two tables mapping recursive relation-
ships over the table CONCEPT, namelyPARENT and ANCESTOR; 3) a table PROFILE

including the profile identifier (profileID attribute) and the so calledstructured in-
formation: extra-ontological content, such as personal data (e.g., last and first name,
birth date) and work-related information (e.g., preferred working hours, car availabil-
ity); 4) a tableRj(X) is created for each entry pointR0

j , 1 ≤ j ≤ 6 whereX is
the set of attributesX = {profileID, groupID, conceptID, value, lastdate} . Once the
CCNF (P ) = ⊓(∃R0

j .CCNF (C)) of a profileP (see Definition 1) has been com-
puted, the assertionP (a) is stored in the database.I.M.P.A.K.T. produces a unique
identifier for candidatea and assigns it to attributeprofileID in table PROFILE. Then,
for each conjunct∃R0

j .C belonging toP (a), it adds one tuple for each atom of the



CCNF (C) to the related tableRj(X). Thus, all features modeled in profile descrip-
tions according to Definition 1 are stored in tablesRj(X) related to the involved entry
points. Notice that, thanks to the fourth rule, our model canbe easily extended. If the
moduleM0 in T is enhanced by a new entry point in order to capture a novel aspect
of candidate CV, then the schema can be enriched by adding thecorresponding table
Rj(X) to it.

3 Skill Matching Services

To evaluate the matching degree between a job request and a candidate profile, we
need that both of them share the KB used for representation. Thus, the job requests
submitted toI.M.P.A.K.T. have to be represented according to the syntax detailed
in Definition 1. In particular, two groups of user requirements (preferences and strict
constraints) compose a job request.

Formally, aJob RequestF is defined as follows:

Definition 2 (Job Request).A Job RequestF is a ProfileF = ⊓(∃R0
j .C) (according

to Definition 1), defined as a pair of feature setsF = 〈FS,FP〉 such that:

– FS = {fsi|1 ≤ i ≤ s} is a set ofs strictly required featuresfsi, of the form
∃R0

j .Ci;
– FP = {fpk|1 ≤ k ≤ p} is a set ofp preferred featuresfpk , of the form∃R0

j .Ck.

I.M.P.A.K.T. provides two matchmaking processes, namelyStrict Matchand
Soft Match, detailed in the following. More formally,Strict Matchis defined as follows:

Definition 3 (Strict Match). Given the ontologyT , a (part of) Job RequestFS and a
setP = {P (a1), . . . , P (an)} of n candidate profiles, modeled according to Definition
1 and stored in the DB according to the schema detailed in section 2, theStrict Match
process returns all the candidate profilesP (aj) in P providing all the featuresfsi in
FS.

We notice that, thanks to the adoption of CCNF, theStrict Matchcan retrieve can-
didate profilesP (a) also more specific thanFS. On the other hand, theSoft Matchis
devoted to implement the approach to approximate matching:the search has to revert
also to candidates having some missing features and/or having featuresslightly conflict-
ing w.r.t. FP. We notice that, according to the formalism adopted, inconsistency may
happene.g., when we have a preferencefpk = ∃R0

j .Ck, with Ck = D⊓ ≥n p, and
a candidate profileP (a) with a specified feature∃R0

j .C, whereC = D⊓ =m p, with
m < n. In order to satisfy user preferences, candidate profiles modeling concrete fea-
tures with values in an interval around the required value could represent a good result.
We name such concrete features asslightly conflictingfeatures (see Definition 4,MC3
class).
In order to search for possible approximate matches,Soft Matchneeds to investigate on
single atoms of CCNF(FP) and compare them with candidate profiles features, which
are stored in the DB in their CCNF. Thus,FP elements need to be further manipu-
lated before the execution ofSoft Match(notice that forStrict MatchI.M.P.A.K.T.
compares candidates features with the ones inFS without any preprocessing ofFS).

More formally, we defineSoft Matchas:



Definition 4 (Soft Match). Given the skill ontologyT , a (part of) Job RequestFP and
a setP = {P (a1), . . . , P (an)} of candidate profiles, modeled according to Definition
1 and stored in the DB according to the schema detailed in Section 2, the Soft Match
process returns a ranked list of candidate profilesP (aj) in P belonging to one of the
following match classes:

1. MC1 is the set of profilesP (aj), such that eachP (aj) provides at least one feature
atom corresponding to a concept name infpk ∈ CCNF (FP)9;

2. MC2 is the set of profilesP (aj), such that eachP (aj) fully satisfies at least one
featurefpk ∈ CCNF (FP) combining inCk both a concept name and a concrete
feature10;

3. MC3 is the set of profilesP (aj), such that eachP (aj) partially satisfies one fea-
ture fpk ∈ CCNF (FP) combining inCk both a concept name and a concrete
feature11.

Finally, in the most general case of job requestF containing bothFS andFP,
I.M.P.A.K.T. performs a two-step matchmaking approach, namelyMatchmaking,
which starts withStrict Matchprocess, computing a set of profiles fully satisfying
strict requirements, and then proceeds withSoft Matchprocess, trying to approximately
match preferences with profiles belonging to the set returned byStrict Match.

According to Definition 3, results retrieved byStrict Matchhave a 100% coverage
level of the job requestF and thus they do not need to be ranked after retrieval. On the
contrary, a ranking process according to a unified measure isnecessary forSoft Match
resulting profiles w.r.t.F . We remind that, among CCNF atoms deriving from features
fpk ∈ FP, I.M.P.A.K.T. distinguishes between atomic concepts and value restric-
tions (i.e., qualitative information) and concrete features (i.e., quantitative information),
since they need a different manipulation in the ranking process.I.M.P.A.K.T. com-
putes a logic-based ranking by applying the following rules: (1) each conjunct in the re-
trieved candidate profile receives a score on the basis of thenumber and type (concept
name or value restriction or concrete feature) of matched featuresfpk ∈ FP; (2) each
conjunct ranked according to rule 1 is “re-weighted” based on the relevance of its related
entry pointR0

j , 1 ≤ j ≤ 6. In rule(1), the score for qualitative information is computed
by simply counting the retrieved atoms matching the requested ones. On the other hand,
in order to assign a score to each feature specification involving p in a candidate profile,
FP features in the form≥n p, =n p and≤n p are managed by a different and specif-
ically designed scoring function. Examining the second rule in our score computation
strategy, it is easy to notice that a relevance order relation needs to be set among entry
points (see the following formula (1) for our current implementation). BothStrict Match
andSoft Match, regardless of their different behavior w.r.t. ranking, share the sameEx-
planationprocess of match between a retrieved candidateP (a) and a job requestF .
Such a process classifies profile features w.r.t. each requirement inF in the following
four groups:Fulfilled : P (a) features either perfectly matching or slightly conflicting
those requested byF ; Conflicting: P (a) features slightly conflicting withFP require-
ments;Additional: P (a) features either more specific than the ones required inF or

9 See queriesQ(fpk) andQNULL(fpk) in Section 3.1
10 See queryQn(fpk) in Section 3.1
11 See queryQnm%

(fpk) in Section 3.1



not exposed in the user request and belonging to entry pointR0
j = hasKnowledge;

Underspecified: F requirements which are not included inP (a) features.
We notice that for a Job RequestF such thatFP = ∅, that is the case ofStrict Match

only, the explanation of the match related to each returnedP (a), is characterized by
empty sets ofUnderspecifiedandConflictingfeatures and by a set ofFulfilled features
equivalent toP (a) itself.

3.1 SQL-based Implementation

Coherently with the approach introduced and motivated so far, once our KB has been
pre-processed and stored into the DB according to our relational schema,I.M.P.A.K.T.
is able to perform all the reasoning services only through standard SQL queries. No-
tice that we do not use a specific preference language as in [10, 3, 12] but we exploit a
set of standard SQL queries built on-the-fly according to both user requirements (i.e.,
strict requirements and preferences) and required features (i.e., atoms contained in each
feature).

Let us consider a strict requirementfsi of the form∃R0
j .Ci. We recall thatCi is

a concept description inFL0(D) which we can model as a conjunction of concepts
defined according to the KB modeling:A – concept name,∀R.D – universal quantifi-
cation,≤n p(≥n p,=n p) – concrete feature,i.e. fsi = ∃R0

j .(A ⊓ ∀R.D⊓ ≥n p).
From database querying point of view,fsi has to be translated in a set of syntactic
elements to search for in the properRj(X) table.Strict Matchasks for a profile to in-
clude all of the previous syntactic elements to be retrieved. Since each of these elements
fills one tuple of aRj(X) table, the resulting query,Qs(fsi), retrieves a results set by
adopting the following conceptual schema: (set of profiles inRj(X) containingA) IN-
TERSECT (set of profiles inRj(X) containingR.D) INTERSECT (set of profiles in
Rj(X) containing≥n p)12.

According to such a schema and the requiredfsi, the queryQs(fsi) is auto-
matically built on-the-fly considering a number of conditions in WHEREclause de-
fined according to atoms inCi. In particular, Fig. 1 presents an executable exam-
ple for the queryfsi = ∃hasknowledge.(Java ⊓ ∀skillType.Programming⊓ ≥3

years). We notice thatQs(fsi) in Fig. 1 has three conditions inWHEREclause, as ex-
pected. On the other hand,Soft Matchrelies on a query schema involving each element
CCNF (fpk), ∀fpk ∈ FP. In particular, letCCNF (fpk) = ∃R0

j .CCNF (Ck) be
a normalized preference; a single queryQ(fpk) or a set of queriesQp(fpk) is built
according to the following schema:

– if none of{≤n p,≥n p,=n p} elements occur inCCNF (Ck), then a single query
Q(fpk) is built which retrieves the profiles containing – w.r.t. therelatedentry
pointR0

j– at least one among syntactic element occurring inCCNF (Ck);

12 To improve engine performance,I.M.P.A.K.T. exploits, as far as possible,EXISTS operator instead ofINTERSECT.

Also for performance reasons, conditions in the formconceptID=(SELECT conceptID FROM CONCEPT

WHERE name=’X’) are not executed at run-time but a lookup on a hash table directly assigns the properconceptID

value.



SELECT profileID
FROM hasKnowledge as R
WHERE conceptID = (SELECT conceptID

FROM concept WHERE name=’Java’)
AND EXISTS (SELECT *

FROM hasKnowledge
WHERE profileid=R.profileid AND groupid=R.groupid
AND conceptid = (SELECT conceptID

FROM concept WHERE name=’skillType.Programming’))
AND EXISTS (SELECT *

FROM hasKnowledge
WHERE conceptid=(SELECT conceptID

FROM concept WHERE name=’years’)
AND value >= 3 AND profileid=R.profileid AND groupid=R.gro upid)

Fig. 1. SQL definition of query Qs(fsi) w.r.t. a single featurefsi = ∃hasKnowledge.(Java ⊓

∀skillType.Programming⊓ ≥3 years)

– otherwise a set of queriesQp(fpk) =
{

Qn(fpk), QNULL(fpk), Qnm%
(fpk)

}

is
built retrieving candidate profiles belonging to a different match class –i.e., either
profiles fulfill fpk (Qn(fpk)) or profiles do not fulfill it (Qnm%

(fpk)) or profiles
do not specifyp (QNULL(fpk)). The resulting set of candidate profiles is made up
by theUNIONof all the tuples retrieved by each of the query inQp(fpk).

As for Strict Match, for eachCCNF (fpk) the previous queries are automatically built
on-the-fly according to syntactic elements occurring inCCNF (Ck). Here, due to the
lack of space, we do not report the SQL definition of bothQ(fpk) query and the set
of queriesQp(fpk). We only notice that the score for each retrieved atom (i.e., tuple)
of candidate feature is computed directly in the SELECT clause of each query imple-
menting theSoft Match. In particular, for qualitative information (i.e., atomic concepts
and value restrictions) score is equal to1, whereas for concrete featurep score is an ex-
pression computed according to scoring functions aforementioned strategy. Moreover,
we notice that, by construction,Soft Matchretrieves candidate profiles belonging to one
of the match classes in Definition 4 for each featurefpk. Thus, such candidates profiles
have to be properly rearranged for defining the final results set. Each retrieved profile is
finally ranked according to a linear combination of scores:

rank =

N
∑

i=1

wi ∗ scoreli (1)

wherewi are heuristic coefficients belonging to the(0, 1) interval,N is the number
of relevance levels defined for the domain ontology andscoreli represents the global
score computed summing the score of tuples related to entry points falling in the same
relevance levelli. I.M.P.A.K.T. defines a numberN = 3 of ontology levels rep-
resented byLevel = {l1, l2, l3} (l1 is the most relevant one), withhasKnowledgeset
to l1; hasIndustry, hasComplementarySkillandhasJobTitleset tol2 and the remaining
entry points set tol3. Moreover, the following values are assigned towi coefficients:
w1 := 1, w2 := 0.75 andw3 := 0.45.



4 System Performances

In this section we focus on the evaluation ofdata complexityandexpressiveness com-
plexityof our knowledge compilation approach and present obtainedresults.I.M.P.A.K.T.
is a client-server application developed in Java. Our current implementation exploits the
open source PostgreSQL 9.1 DBMS. In order to prove the effectiveness and efficacy of
the proposed approach, we initially created a real dataset by collecting approximately
180 CVs on ICT domain, originated from three different employment agencies. The
dataset has been exploited for an iterative refinement phaseof both the Skill Ontology
development and the setting of the Skill Matching parameters (i.e., entry points levels
and weights in scoring strategy). We implemented a synthetic KB instances generator
able to automatically build satisfiable profiles according to a given format (i.e., number
of features for each relevance level, number of numeric restrictions, etc.). In this way,
we generated datasets having different size, ranging from 500 to 5500 profiles, with
bigger datasets including the smaller ones. We point out that for the datasets construc-
tion we considered a number of features for each candidate comparable to the average
value of candidate profiles in the previous mentioned real dataset. In particular, each
generated profile has at least: 30 features forhasKnowledgeentry point, 2 features for
hasLevelandknowsLanguageentry points, and 3 features forhasJobTitle, hasIndustry
andcomplementarySkillentry points. Tests refer toI.M.P.A.K.T. running on an In-
tel Dual Core server, equipped with a 2.26 GHz processor and 4GB RAM and measure
the retrieval time calculated as average time over ten iterations. Here we report retrieval
times of 9 significant queries, selected among several test queries with a different ex-
pressiveness divided into 3 groups:(A) only strict requirements represented by either
generic concepts (Q4) or features with an higher specificity (Q5); (B) only preferences
again represented by either generic concepts (Q2) or features with an higher specificity
(Q3); (C) a combination of all A) and B) groups features (Q1,Q6,Q7,Q8,Q9). We no-
tice that: 1)Q1 query is a translation in our formalism of a real job request available on
http://jobview.monster.co.uk titled “SQL Developer (Business Intelligence)”
and containing 2 strict and 12 soft requirements for entry point hasKnowledgeand only
one soft request for entry pointcomplementarySkill; 2) queries fromQ2 toQ7 are com-
posed by one feature for each entry point; 3)Q6 = Q2 ∪Q4 andQ7 = Q3 ∪Q5; 4)Q8

involves only three entry points,i.e., hasKnowledge, knowsLanguageandhasLevel; 5)
Q9 involves several features for each entry point.

Table 1 shows the retrieval times together with the number ofretrieved profiles
(#p) for each dataset and request. In particular, in order to better evaluate matching
performances, we differentiate among the request normalization process times (seetn in
Table 1), which is dataset-independent,Strict Matchretrieval times (seetst in Table 1)
andSoft Matchretrieval times (seetsf in Table 1) including also the ranking calculation
times.

As we expected, retrieval times of both match procedures linearly increase with
datasets size (e.g.seeQ5). In particular,Strict Matchtimes are also dramatically af-
fected by#p (see results forDS5 in Table 1), whereas theSoft Matchtimes seem to
grow more slowly with#p. We therefore observe that the number of retrieved profiles,
though affecting the whole matchmaking process, mostly impactsStrict Match, since it
involves the SQL intersection of several queries by construction. In particular, profiles



Table 1.Retrieval times in milliseconds and number of retrieved profiles (#p) for datasetsDS1,
DS2, DS3, DS4 andDS5 of, respectively, 500, 1000, 2000, 3500 and 5500 profiles.

DS1 DS2 DS3 DS4 DS5

tn tst tsf #p tst tsf #p tst tsf #p tst tsf #p tst tsf #p

Q1 724.4 124.2 210.6 4 246.6 240.8 10 545.6 382.5 20 784.5 402.2 28 2334.8 551.8 144

Q2 335.8 0 305.7 461 0 456.8 927 0 563.6 1829 0 756.2 3202 0 1158.8 5029

Q3 474.8 0 440.5 396 0 578.2 740 0 782.2 1560 0 1624.8 2729 0 2775 4270

Q4 225.9 71.2 0 10 110.4 0 13 212.8 0 23 336.4 0 35 423 0 52

Q5 224.4 74.1 0 1 115.2 0 1 218 0 1 342 0 1 441.4 0 1

Q6 240.6 96.7 103.8 10 147.4 128.4 13 227.4 139.4 23 344.4 173 35 485.5 180.4 52

Q7 538.8 84.8 97.8 1 119.8 133.4 1 219.2 179.6 1 343.8 193.8 1 473.2 208 1

Q8 347 228.6 96.6 17 456.6 113 44 927 125.2 79 1277.4 132.4 131 2593.4 196.8 226

Q9 317.8 136.8 163 3 244.2 166.5 3 385.6 168.6 4 671.2 180 5 1245.8 252 7

returned byQ5 are dataset-independent, as theStrict Matchprocedure always returns
the same profile (i.e., no other profile satisfying strict requirement exists in the datasets).
In order to verify the approach expressiveness complexity,we evaluated retrieval times
of different test queries on one dataset at a time. It has to beobserved that: (i) for
queries only expressing preferences (Q2,Q3) or only strict requirements (Q4,Q5), the
retrieval time increases with the query expressiveness; (ii) for the other queries, thanks
to preliminary execution ofStrict Match, theSoft Matchtimes are always notably re-
duced, so confirming the theoretical complexity results. Inparticular, we notice that for
larger data sets and a number of retrieved profiles larger than 3000 (seetsf in Q2 and
Q3 onDS4, DS5), expressiveness of soft requirements has a more relevant impact on
retrieval times. Moreover, for each dataset, the real-dataqueryQ1 has retrieval times
comparable to all queries belonging toC group considering also the#p value. Thus,
in the whole matchmaking process, involving both strict requirements and preferences,
the query expressiveness does not significantly affect retrieval times.

Summing up, we can claim thatI.M.P.A.K.T. is able – with time performances
encouraging its application in real-world scenarios – to provide crucial value-added
information with respect to typical HR management tasks, even on large datasets.

5 Discussion and Future Work

Motivated by the need to efficiently cope with real-life datasets in semantic-enhanced
skill matching, we presented a knowledge compilation approach able to translate a KB
into a relational database while retaining the expressiveness of the logical representa-
tion. The obtained model allows to perform reasoning services through standard-SQL
queries, in the framework ofI.M.P.A.K.T. . Performance evaluations on various
datasets show an efficient behavior although several optimization techniques have not
been implemented yet. Future work aims at testing further devised strategies for score
calculation, including the possibility for the user to assign a weight to each preference,
along with a full optimization of the database.



6 Acknowledgments

We gratefully acknowledge support of projects UE ETCP ”G.A.I.A.” and Italian PON
ERMES ”Enhance Risk Management through Extended Sensors”.

References

1. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook – 2nd edition. Cambridge University Press (2007)

2. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3-4), 137–
150 (1997)

3. Chomicki, J.: Querying with Intrinsic Preferences. In: Proc. of EDBT 2002. pp. 34–51.
Springer (2002)

4. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An EfficientSQL-based RDF Querying
Scheme. In: Proc. of VLDB 2005. pp. 1216–1227. VLDB Endowment (2005)

5. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: Concept Abduction
and Contraction for Semantic-based Discovery of Matches and Negotiation Spaces in an E-
Marketplace. In: Proceedings of the 6th Int. Conf. on Electronic Commerce, ICEC’04. pp.
41–50 (2004)

6. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Piscitelli, G., Coppi, S.: Knowledge
Based Approach to Semantic Composition of Teams in an Organization. In:Proceedings of
the 20th Annual ACM (SIGAPP) Symposium on Applied Computing SAC-05.pp. 1314–
1319. ACM (2005)

7. Colucci, S., Tinelli, E., Sciascio, E.D., Donini, F.M.: Automating competence management
through non-standard reasoning. Engineering Applications of ArtificialIntelligence 24(8),
1368–1384 (2011)

8. Di Noia, T., Di Sciascio, E., Donini, F.: Extending Semantic-Based Matchmaking via Con-
cept Abduction and Contraction. In: Proceedings of the 14th International Conference
on Knowledge Engineering and Knowledge Management (EKAW 2004).LNAI, Springer
(2004)

9. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.:
Scalable semantic retrieval through summarization and refinement. In: Proc. of AAAI 2007
(2007)

10. Kießling, W.: Foundations of Preferences in Database Systems. In: Proc. of VLDB 2002. pp.
311–322. Morgan Kaufmann, Los Altos (2002)

11. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - A Pragmatic Semantic Repository for
OWL. In: Proc. of WISE’05. vol. 3807, pp. 182–192. Springer (2005)

12. P. Bosc and O. Pivert: SQLf: a relational database language for fuzzy querying. IEEE Trans-
actions on Fuzzy Systems 3(1), 1–17 (Feb 1995)

13. Tinelli, E., Cascone, A., Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.M.: I.M.P.A.K.T.:
An Innovative Semantic-based Skill Management System Exploiting Standard SQL. In:
Proc. of ICEIS 2009. pp. 224–229 (2009)

14. Tinelli, E., Colucci, S., Di Sciascio, E., Donini, F.M.: Knowledge compilation for automated
team composition exploiting standard SQL. In: proc. of ACM SAC ’12. pp.1680–1685
(2012)


