Linked Open Data to support Content-based Recommender Systems

8th International Conference on Semantic Systems (I-SEMANTICS 2012) - 2012
Download the publication : i-semantics2012.pdf [559Ko]  
The World Wide Web is moving from a Web of hyper-linked Documents to a Web of linked Data. Thanks to the Semantic Web spread and to the more recent Linked Open Data (LOD) initiative, a vast amount of RDF data have been published in freely accessible datasets. These datasets are con- nected with each other to form the so called Linked Open Data cloud. As of today, there are tons of RDF data available in the Web of Data, but only few applications really exploit their potential power. In this paper we show how these data can successfully be used to develop a recommender system (RS) that relies exclusively on the information encoded in the Web of Data. We implemented a content-based RS that leverages the data available within Linked Open Data datasets (in particular DBpedia, Freebase and LinkedMDB) in order to recommend movies to the end users. We extensively evaluated the approach and validated the effectiveness of the algorithms by experimentally measuring their accuracy with precision and recall metrics.

BibTex references

author = {Tommaso {Di Noia} and Roberto Mirizzi and Vito Claudio Ostuni and Davide Romito and Markus Zanker},
title = "Linked Open Data to support Content-based
Recommender Systems",
booktitle = "8th International Conference on Semantic Systems
(I-SEMANTICS 2012)",
series = "ICP",
year = "2012",
publisher = "ACM Press",
url = "

Other publications in the database

SisInf Lab - Information Systems Laboratory

Research group of Politecnico di Bari
Edoardo Orabona St, 4 Bari, Italy