
I.M.P.A.K.T.: an innovative, semantic-based skill management system exploiting
standard SQL

Eufemia Tinelli1,2, Antonio Cascone3,Michele Ruta1,Tommaso Di Noia1,Eugenio Di Sciascio1, Francesco M. Donini4

Politecnico of Bari, via Re David 200, I - 70125 Bari
University of Bari, Orabona 4, I - 70125 Bari

DOOM s.r.l, Paganini, 7 - 75100 Matera
University of Tuscia, S. Carlo, 32 - 01100 Viterbo

e.tinelli@poliba.it, antonio.cascone@doom-srl.it, m.ruta,t.dinoia,disciascio@poliba.it, donini@unitus.it

Keywords: Skill Management, Logic-based Ranking, Match Explanation, Soft constraint

Abstract: The paper presents I.M.P.A.K.T. (Information Management and Processing with the Aid of Knowledge-based
Technologies), a semantic-enabled platform for skills andtalent management. In spite of the full exploita-
tion of recent advances in semantic technologies, the proposed system only relies on standard SQL queries.
Distinguishing features include: the possibility to express both strict requirements and preferences in the re-
quested profile, a logic-based ranking of retrieved candidates and the explanation of rank results. System
features are discussed in comparison with similar approaches,e.g., SQLf, and both quantitative and qualitative
experimental results are proposed.

1 INTRODUCTION AND
MOTIVATION

One of the most critical aspect recruiters have to
face with, is the allocation of people to cover specific
tasks based on both theknowledgethe workers should
have (in terms of owned skills) and theknowledgere-
cruiters themselves should have related to the specific
recruiting domain. Nevertheless, two fundamental is-
sues affect the skill management. First of all, skills
are often related with each other and then the knowl-
edge of a particular technology or tool may imply to
know something else. Furthermore, in a more practi-
cal way, due to their daily work, recruiters should be
experts in whatever domain or at least in the overall
knowledge domain related to the recruiting company.

The above issues call for the adoption of e-
recruiting systems allowing to electronically manage
the whole recruitment process (or part of it) reduc-
ing costs. The efficiency of such tools is determined
by the efficacy of their underlying frameworks able
to perform the match among employment require-
ments and job positions. The state of the art of such
systems1 basically relies on keyword-based indexing

1http://www.attract-hr.com/cm/about,

http://www.oracle.com/applications/human resources/irecruit.html

and use RDBMSs to store the indexed information.
Exploiting standard relational database techniques to
model an e-recruiting framework, there is the need
to completely align the attributes of the offered and
requested human resources, in order to perform a
match. If requests and offers are described by means
of string keywords, the only possible match would
be identity, resulting in an all-or-nothing outcome.
From this point of view, it is noteworthy that non-
logical approaches to resource retrieval and match-
making have serious limitations. On the other hand,
pure knowledge-based approaches both often require
heavy computational capabilities (with unacceptable
response times) and use only pure deductive inference
to entail implicit knowledge starting from the explic-
itly stated one.

A small example will clarify features and main
differences of the above mentioned approaches to
skill management. Let us suppose a recruiter is look-
ing for anexpert in AJAX programming at least two
years experienced. Three possible candidates are
available –Jack, John andAl– whose profiles are re-
ported in what follows:

Jack. He has a basic oral knowledge of the English
language whereas he’s doing better with written
English. Furthermore, he has an excellent experi-
ence in Java programming (5 years until Decem-

ber 10, 2008), ...

John. He is one year experienced in Web Design up
today with a good knowledge of XHTML, CSS,
DHTML, PHP, ...

Al. He is skilled in server-side Web programming, ...

The candidates will be ranked based on their
profile descriptions and on the original request as
reported hereafter:
(1) John;(2) Al; (3) Jack.

Arrangement motivation is that theAJAX knowl-
edgeimplies theknowledge of XHTML, JavaScript,
CSS(among athers)2 then, reasonably, skills owned
by John are very close to the requested ones. Fur-
thermore, since AJAX programming refers to Web
technologies Al’s skills seem to be more suitable than
Jack’s ones. Note that, simply adopting a keyword-
based search, it is very difficult to rank the managed
profiles; on the contrary a semantic-based approach
helps in building a list of results arranged in order of
relevance thanks to the exploitation of a domain on-
tology.

Now, a new question arises for a recruiter: how
to explain the ranking results? If she is a domain
expert, she can easily write down a report exposing
the outcome motivation. But, what happens if she is
not a specialist (and this is a very frequent situation
in recruitment agencies)? Could the e-recruitement
system help her in suggesting the reason why John is
better than Al who is in turn better than Jack? More-
over, often recruiters posting job offers could have
the need to specify a subset of the whole require-
ments as mandatory and the remaining part as pre-
ferred (likely with a preference degree). Could the
system take into account in the matchmaking proce-
dure differences among strict constraints and prefer-
ences in a required profile?

Current e-recruitment tools do not cope with this
issues. Information about the employment, personal
data as well as certifications and competence of can-
didates are generally modeled exploiting relational
databases with customized and structured templates.
Nevertheless, in spite of a Data Base Management
System is surely suitable for efficient storage and re-
trieval, SQL does not allow the necessary flexibility
to support a complex discovery process as the recruit-
ment one. Theorder by statement and themin and
max aggregation operators are generally used to ”triv-
ially” retrieve thebesttuplesi.e., the best candidate
for a specific task. Furthermore, currently, a job-
seeker describes vacant job positions using traditional
methods, such as advertisements and referral systems

2Note that this is not a trivial IS-A relation.

or on-line recruitment portals3. Nevertheless, the re-
cruitment procedure has became more complex and
articulate due both to the increase of competitiveness
in work environments and to the high number of spe-
cific competences (as for example in the ICT field).

Classical DB-based techniques show their lim-
its in managing complex domains. Furthermore, in
on-line recruitment portals the search processes can
be very time-consuming but often unsatisfactory be-
cause underlying frameworks basically rely only on
keyword-based approaches where recruiters can ex-
press only mandatory requirements (there is no pos-
sibilities to select positions according to some nego-
tiable constraints). Finally, such systems usually do
not return arranged outcomes (a priori excluding re-
sults summarily deemed as not relevant) and above
all they do not provide any matchmaking explanation.

In this paper a novel approach to skill man-
agement is presented resulting inI.M.P.A.K.T.
(InformationManagement andProcessing with the
Aid of Knowledge-basedTechnologies), an inno-
vative application based on a hybrid approach. It
takes use of an inference engine which performs non-
standard reasoning services presented in (Di Noia
et al., 2004; Colucci et al., 2005a) over a Knowledge
Base (KB) by means of a flexible query language ex-
ploiting standard SQL. Noteworthy is the possibility
for the recruiter to explicit mandatory requirements as
well as preferences during the matchmaking process.
The former will be considered asstrict constraints
and the latter assoft constraintsin the well-known
sense of strict partial orders (Kießling, 2002). More-
over, the proposed tool is able to cope also with non-
exact matches always providing a result explanation.

Undoubtedly, logic-based approaches increase the
efficiency and the flexibility of recruitment. An
automatic matchmaking process between candidate
profiles and job positions –expressed according to
mandatory requirements and preferences provided by
the recruiter– allows to discover the most qualified
candidates w.r.t. a requested job position in a straight-
forward way. Hence, the retrieval process is not
bound to a simple but quite inefficient string match-
ing. I.M.P.A.K.T. exploits a specificSkills On-
tology modeling experiences, certifications and abil-
ities along with personal and employment informa-
tion of candidates. It has been designed and im-
plemented using (a subset of)OWL DL and, in order
to ensure scalability and responsiveness of the sys-
tem The deductive closure of the ontology has been
mapped within an appropriate relational database.
Using I.M.P.A.K.T., both job-seekers and candi-
dates refer to the same knowledge domain model.

3http://www.monster.com/, http://www.careerbuilder.com

Thanks to a friendly GUI, browsing theSkills On-
tology the job-seeker defines a vacant job position as
conjunction of features. Each of them can be treated
as a mandatory requirement (strict constraint) or as a
preference (soft constraint). Hence, the system trans-
lates a user request into a set of SQL queries for re-
trieving the best candidates to cover a given position.

For each expressed preference, a proper weight
function is exploited to compute a score allowing to
rank results. If needed, a match explanation (Colucci
et al., 2005b) is computed only using SQL queries
for each returned candidate. In fact, for each re-
trieved profile, the system is able to provide informa-
tion about additional, fulfilled or underspecified fea-
tures w.r.t. the request. In the same way, it will indi-
cate characteristics conflicting with the request itself.

The remaining of the paper is structured as fol-
lows: Section 2 reports on relevant related work,
whereas the following Section 3 outlines language
and algorithms we adopt inI.M.P.A.K.T.. In Sec-
tion 4 we describe the system architecture while in
Section 5 an illustrative example is used to clarify the
approach and the rationale behind it. A preliminary
system performance evaluation is presented in Sec-
tion 6. Finally conclusion closes the paper.

2 STATE OF THE ART

Several frameworks and systems have been con-
ceived and developed in the e-recruitment field. Here
we will focus on logic-based approaches.

In order to improve the recruitment and refer-
ral process, the US Navy Department make use of
STAIRS4, a system (not exploited for recruitment of
non-military people but adopted as an internal tool)
allowing to develop referral lists of best qualified can-
didates according to the number of skills they match
w.r.t. a specific mansion. The commercial software
supporting STAIRS is RESUMIX5. It is an automated
staffing tool making use of artificial intelligence tech-
niques. As forI.M.P.A.K.T., it allows to distinguish
betweenrequiredanddesiredskills in the query for-
mulation. All the required skills must be matched by
the retrieved candidate. To the best of our knowledge,
the above two systems are currently the only ones ex-
ploiting logic-based formalisms. Many other differ-
ent solutions for talent management and e-recruitment
exist. They mostly aim at improve the recruitment
process by exploiting innovative media and tools, but
their concrete novelty charge is more limited.

4http://www.hrojax.navy.mil/forms/selectguide.doc
5http://www.cpol.army.mil

The issue of managing preferences is not new
in information retrieval systems. From this view-
point, two competing approaches have emerged so far,
thanks to Chomicki (Chomicki, 2002), even if they do
not have been specifically applied to the skill manage-
ment research field. The first one –defined asquanti-
tative– models preferences exploiting utility functions
(C. Li, K. C.-C. Chang, Ihab F. Ilyas and S. Song,
2005; P. Bosc and O. Pivert, 1995), whereas the sec-
ond one –Chomicki namedqualitative– uses logical
formulas (Kießling, 2002; Chomicki, 2002; Hafen-
richter and Kießling, 2005). In particular, in the latter
approach the Chomickiskylineoperator is exploited.
Furthermore, some relevant theoretical aspects and
possible optimizations of Sort Filter Skyline (SFS)
algorithm for computing skyline queries have been
introduced (Chomicki et al., 2005). Preferences are
modeled asstrict partial ordersand interpreted assoft
selection constraintsunder the query model defined
asBest Matches Only (BMO)by Kießling and called
Winnowby Chomicki. Several implementations of
such BMO/Winnow query languages, supporting dif-
ferent preference constructors, have been conceived
besides the above mentioned skylines. The use of
BMO/Winnow query languages has been also inves-
tigated in practical database applications (Kießling
et al., 2004; Döring et al., 2008). Various approaches
using numerical ranking in combination with either
the top-k model (Li et al., 2005; Hristidis et al., 2001;
Yu et al., 2005), the Preference SQL (Kießling and
Köstler, 2002) or the Preference XPath (Kießling,
2002) have been also devised. Top-k queries ensure
an efficient ranking support in RDBMSs letting the
system to provide only a subset of query results, ac-
cording to a user-specified ordering function (which
generally aggregates multiple ranking criteria). The
algebra is implemented by means of both an efficient
query execution model (C. Li, K. C.-C. Chang, Ihab F.
Ilyas and S. Song, 2005) and new physical rank-aware
operators (Ilyas et al., 2004) where rank relations are
processed incrementally. RankSQL (Li et al., 2005) is
the first RDBMS that fully integrates a ranking sup-
port as a first-class functionality. In other systems,
basically the user adopts terms likeideal, good for
expressing her preferences andhigh, mediumfor set-
ting the relevance she assigns to a ranking criterion.
SQLf (P. Bosc and O. Pivert, 1995) is another SQL
extension to cope with user preferences. It allows
to formulate queries on atomic conditions defined by
fuzzy sets. Each attribute of a tuple is associated to
a satisfaction degreeµ in [0,1]. Goncalves& Tineo
(Goncalves and Tineo, 2006), estimate SQLf to be
more expressive and less time-consuming than sky-
line queries.

Differently from the above mentioned approaches,
a relevant aspect of our work is the exploitation of
classical relational database systems and languages
i.e., SQL, for storing the reference ontology and to
perform reasoning tasks. Databases allow users and
applications to access both ontologies and other struc-
tured data in a seamless way. Das et al. (Das
et al., 2004) present a prototype implementation stor-
ing OWL-Lite and OWL-DL ontologies in Oracle
RDBMSs, which provides a set of SQL operators for
ontology-based semantic matching.Jena 2 Ontol-
ogy Stores(Wilkinson et al., 2003),Sesame(Broek-
stra et al., 2002) andOracle RDF Storeuse a three
columns relational table〈Sub ject,Property,Ob ject〉
to memorize RDF triples; in spite of a similar inter-
nal structure, those systems present different infer-
ence capabilities among them. Other ontology stores
–such asDLDB (Pan and Heflin, 2003) andSesame
on PostgreSQL(Broekstra et al., 2002)– adopt binary
tables. They create a table for each ontology class
caching the classification hierarchy in the database
and providing tables which maintain all the subsump-
tion relationships between primitive concepts. This
happens for example inInstance Store(iS) (Bech-
hofer et al., 2005), a system for reasoning over
OWL KBs specifically adopted in bio and medical-
informatics domains. Given a selected ontology,iS
replies to instance retrieval queries using a hybrid rea-
soner/database approach working on a set of axioms
asserting class-instance relationships. A comparison
betweeniS and the framework we present here points
out the former reduces instance retrieval to pure TBox
reasoning also coping only on exact matches (i.e., in-
stance retrieval). On the contrary we use an enriched
relational schema able to support either potential or
partial matches and to provide logic-based result ex-
planations.

3 I.M.P.A.K.T. LANGUAGE AND
SERVICES

Basically,I.M.P.A.K.T. framework aims to effi-
ciently store and retrieve KB individuals taking into
account theirstrict andsoft constraints and only ex-
ploiting SQL queries over a relational database. In
what follows we report details and algorithms of the
proposed approach assuming the reader be familiar
with basics of Description Logics (DLs)(Baader et al.,
2002), the reference formalism we adopt here.

With reference to the domain ontology, we define:

• main categoriesandentry points. Given a concept
nameCN, if CNv >, then it is defined as amain

C,D → CN
∃Ru∀R.CN

≤n a
≥n a
=n a
CuD

Figure 1: Syntax rules forAL(D) concepts used in
I.M.P.A.K.T.

categoryfor the reference domain. For what con-
cerns role names, we define anentry pointsR as
a role whose domain is> and whose range is a
main category. Furthermore, for each main class
a relevance for the domain is expressed as an in-
teger valueL.

• relevance classes. For each concept nameCN, a
set ofrelevance classeseither more generic than
CN or in some relation withCN can be defined.
For example, in the ICT Skill Management do-
main, the conceptJ2EE could have as relevance
classesOb ject OrientedProgrammingandJava
among others.

The reference domain ontology is modeled as an
AL(D) one and the following axioms are allowed:

CN0 v CN1u . . .CNm

CN0 ≡ CN1u . . .CNm

CN1 v ¬CN2

∃R.(CN1u . . .uCNk) v ∀S.C

where R and S are entry pointswhereasC is an
AL(D) concept defined as in Figure 16.

All the requests submitted to the system as well as
the description of CVs can be represented as DL for-
mulas possibly mapped in standard SQL queries. In
such queries,WHERE clause is used for select relevant
tuples andGROUP BY/ORDER BY operators to compute
the final score. Notice that we do not use a specific
preference language as in (Kießling, 2002; Chomicki,
2002; P. Bosc and O. Pivert, 1995) but we only exploit
a set ofad-hocSQL queries built supposing the fol-
lowing DL template for expressing user requirements
(soft and strict constraints) and a candidate profile.
(see Section 3.2 for further details):

∃R1.C1u . . .u∃Rn.Cn (1)

whereR1, . . . ,Rn areentry pointsandC1, . . . ,Cn are
AL(D) concepts defined w.r.t. the syntax reported in
Figure 1.

6Observe that in the currentSkills Ontologywe do not
use disjunction axioms. In fact, in the recruitment domain
it is quite rare to assert thatif you know A then you do not
know B.

Similarly to the approach adopted iniS, we use
role-free ABoxes,i.e., we reduce reasoning on the
ABox to reasoning on the TBox (Bechhofer et al.,
2005). Furthermore, individuals in the knowledge
base are normalized w.r.t. a Concept-Centered Nor-
mal Form (CCNF) (Baader et al., 2002).

3.1 KB relational schema

In order to store both the classified TBox and the
normalized ABox we have modeled a proper rela-
tional schema. It is also optimized for individual in-
stances retrieval and ranking (in case of strict and soft
matches) and for providing match explanations. The
E-R model of the reference database is sketched in
Figure 2 where theprofile table maintains the so
calledstructured info, exploited to take into account
non ontological information referring to a specific CV
description.

In Figure 2(a) tables referring to the TBox are re-
ported. Theconcept table stores primitive and de-
fined concepts along with data and object properties.
Actually, also descriptions in the form∀R.∀S. . .∀T.C,
beingC a primitive concept name, are stored in the
concept table itself. For each defined conceptC
in concept, the desconcepts table will store the
atomic elements belonging to theC CCNF. parent
andchild tables will respectively store parents and
children of a given concept and, finally, thedisjoint
table maintain disjunction sets7. EachpropertyR
table (R = 1, . . . ,N) refers to a specificentry point
among theN ones defined in the domain ontology.
Each of them will store features of normalized indi-
viduals referred to a specified ontology main category.

Simply recalling the introductory example, we
can describe theJack’s profile according to the
template in (1) as feature conjunction:
∃hasKnowledge.(Java u ∀skillType.programmingu =5

yearsu =2008−12−10 lastdate) u∃knowslanguage.(English
u =1 verbalLevelu =2 writingLevel) where
hasKnowledge and knowslanguage are entry
points (see Section 3.2 for details). It will be split
and stored in two tables namedhasKnowledge and
knowslanguage. Finally, according to the model,
value andlastdate attributes respectively represent
a numeric data property (years value in the above
example) and the last update of that value (lastdate
value in the previous example).

In Figure 2(b) are modeled the auxiliary tables
(not fully represented here due to the lack of space)
needed to store intermediate match results with their
relative score.

7As stated before, in the Skills domain this table was
empty.

Since the ontology contains classes and object
properties (i.e., qualitative information), and datatype
properties (i.e., quantitative information), in order to
rank final results w.r.t. an initial request we have
to manipulate in two different ways qualitative and
quantitative data. In particular, to assign a score to
each individual data propertya, specifications in the
form≥n a are managed by the function in Figure 3(a)
whereas properties in the form=n a will be managed
by the one in Figure 3(b) respectively8. n is the value
the user imposes for a given data propertya whereas,
in both functions, we indicate withnm% the threshold
value for accepting the individual features containing
a. nm% is a cut-coefficient calculated according to the
following formula:

nm% = n± [(Max−min)/100]∗m (2)

whereMax and min respectively are the maximum
and the minimum value stored invalue attribute for
the data propertya in the relatedpropertyR table.

min maxnnm% value

0

1

min nnm%- value

0

1

nm%+ max

(a) (b)

Score Score

(n – nm%)

(max – nm%)

Figure 3: Score functions

3.2 Match classes and results
explanation

In order to cope with soft and strict constraints
I.M.P.A.K.T. performs a two step matchmaking
process. It starts computing a Strict Match and, in
case, it exploits obtained results as initial profile set
for computing the following Soft Matches.

A Strict Match is similar to anExactone (Di Noia
et al., 2004), whereas a Soft Match is a revised ver-
sion of a Potential one (see also (Di Noia et al.,
2004)) which takes into account information related
to datatype properties. Given a request containing
a soft constraint on a datatype property in the form
{ ≤n a,≥n a,=n a } , I.M.P.A.K.T. will also re-
trieve resources whose value for the propertya is in
the rangen± nm%. This is not allowed by a Poten-
tial Match because the resources themselves are seen

8For query features containing concrete domains in the
form≤n a, we will use a scoring function which is symmet-
ric w.r.t. the one in Figure 3(a).

Figure 2: KB schema

as carrying out conflicting features w.r.t. the user re-
quest.

In what follows the matchmaking process per-
formed by the proposed system will be detailed.
First of all, it separates soft featuresf p from strict
ones f s within the request and it normalizes both
f p and f s in their correspondingCCNF(f p) = ∃R.C
and CCNF(f s) = ∃S.C respectively. For each en-
try point R in soft features the corresponding set
F P R = {∃R.C} is identified. Similarly, for strict fea-
tures, the setsF S S are defined. If needed, soft and
strict features can be grouped to build the two sets
F P = {F P R} andF S = {F SS}.

After this preliminary step, for each element
∃R.C ∈ F P a single queryQ or a set of queriesQ a

are built according to following schema:

• if no of { ≤n a,≥n a,=n a } elements occur inC9

then a single queryQ is built. W.r.t. the specific
entry pointR, it will retrieve the profile features
containing at least one among syntactic element
occurring inC;

• otherwise a set of queries Q a =
{Qn,QNULL,Qnm%} is built. W.r.t. the spe-
cific entry point R, Q a will retrieve the profile
features containing at least one among syntactic
elements occurring inC also satisfying –either
fully or partially– the data propertya according to

9Recall that at this stageC has been translated in its nor-
mal form w.r.t. the reference ontology

the threshold valuenm% and the scoring functions
in Figure 3. The final result is theUNION of all the
tuples retrieved by queries inQ a.

In the latter caseQn, QNULL andQnm% represent
respectively:
- Qn retrieves only tuples containing, for theentry
point R, both at least one syntactic element occurring
in C and the satisfied data propertya. In this case, the
structure ofQn changes according to requested con-
straint (≤n a,≥n a or =n a) as well as the proper scor-
ing function in Figure 3 has to be used in order to
opportunely weight each feature;
- QNULL retrieves only tuples containing, for theentry
point R, both at least one syntactic element occurring
in C and not containing the data propertya; i.e., it
returns also tuples wherea, corresponding tovalue
attribute ofpropertyR table, isNULL;
- Qnm%, retrieves only tuples containing, for theentry
point R, both at least one syntactic element occurring
in C and a data property value fora within the inter-
val [nm%, . . . ,n]. Hence,nm% can be seen as thresh-
old value for accepting profile features10. About the
syntactic structure ofQnm%, the same above consider-
ations forQn can be repeated here.

The above queries, to some extent, grant the
”Open-World Assumption” upon a database which is
notoriously based on the well-known ”Close-World

10It is similar to theλ− cut operator of SQLf language
(P. Bosc and O. Pivert, 1995).

Assumption”. The queriesQ andQ a are used in the
Soft Match step of the retrieval process.

At the beginning of the retrieval process, the Strict
Match algorithm searches for profiles fully satisfying
all the formulas inF S . Furthermore, starting from tu-
ples selected in this phase, the Soft Match algorithm,
by means ofQ andQ a, will extract profile features
either fully or partially satisfying a single formula in
F P .

Obviously, the same profile could satisfy more
than one formula inF P . Candidate profiles retrieved
by means of a Strict Match have a 100% covering
level of the user request, whereas a measure has to be
provided for ranking profiles retrieved by means of a
Soft Match. To this aim, each tuple of apropertyR
table corresponding to one element ofC is oppor-
tunely weighted for a specifiedR. Hence, for exam-
ple, the profile feature∃hasKnowledge.(Javau =5 years
u ∀skillType.programmingu =2008−12−10 lastdate) will
be stored inhasKnowledge table filling 4 tuples.

In particular, by means ofQ a, the system assigns
aµ∈ [0,1] value only to elements (tuples) in the form
=n a according to the scoring function related to user
requested constraint fora, by means ofQ and Q a,
it will assign 1 to the other elements inC. Once
retrieved, these ”weighted tuples” are so stored in
proper tables namedpropertyR i (i = 1, . . . ,M for
a query where|F P R| = M) created at runtime.

In other words, thepropertyR i table will store
tuples (i.e., features elements) satisfying the i-th soft
requirement of the user request belonging toF P R and
havingpropertyR as entry point. ThepropertyR i
schema enriches thepropertyR schema by means of
two attributes, namelyscore andcover. The for-
mer is the score related to each tuple (computed as
described above), the latter marks each feature piece
as fully satisfactory or not. Thecover attribute can
only assume the following values:(a) cover = 1 in
case the tuples have been retrieved byQn, QNULL or
Q queries;(b) cover = 0.5 in case the tuples have
been retrieved by aQnm% query and they represent a
data propertya. The overallscoreandcovervalues
of a retrieved profile are calculated combiningscore
andcover values of each tuple, as described in what
follows.

The whole Soft Match process can be summarized
in the following steps. Here, we introduceLi as the
relevance level the user assigns to the i-th soft feature
of a request belonging toF P R.
step I. For each∃R.C ∈ F P the ”weighted tuples”
of propertyR i tables are determined and, for each
retrieved feature, the score valuesi is computed by
adding thescore value of each tuple. In the same
way, will be calculated the cover valueci ;

step II. for each profile and for eachpropertyR i
table, only features with the maximumsi value are
selected;
step III. the profile features belonging to the same
level Li are aggregated among them. For each re-
trieved profile, the system provides a global scoresLi

adding the scoressi of features belonging to a given
Li ;
step IV. the retrieved profiles are ranked acording to a
linear combination of scores obtained at the previous
step. The following formula is exploited:

score= sL1 +
N−1

∑
i=1

wi ∗ sLi+1 (3)

wherewi are heuristic coefficients belonging to the
(0,1) interval andN is the number of levels defined
for the domain ontology (L1 is the most relevant one).

PropertyRi tables are also exploited for score ex-
planation and to classify features of each retrieved
profile. They can be divided into:
Fulfilled . That is fully satisfying the corresponding
request features.
Conflicting. That is containing a data property value
slightly conflicting with the corresponding request
feature11.
Additional. That is either more specific than required
ones or belonging to the first relevance level but not
exposed in the user request;
Underspecified. That is absent in the profile –and
then unknown for the system– but required by the
user.

Observe that features with a non-integer value for
ci are conflicting by definition.

The request refinement process follows the match
calculation one. To this aim the score explanation is
surely useful. In fact, by analyzing fulfilled and con-
flicting features, a job-seeker can decide to negotiate
either features themselves or data property values, as
well as she can also enrich the original request by
adding new features taken from the additional ones.

About the refinement process, the following result
ensues. Consider a requestQ, and let us supposeQ al-
lows to retrieve profilesp1, p2, . . . , pn by means of the
Soft Match –exactly in the reported order. In general,
pi ≺Q p j denotes that profilepi is ranked byQ bet-
ter thanp j . Hence, in the previous case,p1 is ranked
better thanp2 and so on. Now, ifQf p is obtained by
adding toQ another featuref p asnegotiablefeature,
we can divide the previousn profiles into the ones
which fulfill f p, the ones which do not it and the ones
for which data propertya is unknown.

11The possibility to identify and extract components in a
slight disagreement with the request represents a significant
added value w.r.t. approaches based on Fuzzy Logic.

If pi , p j both belong to the the same class –i.e., if
either both fulfill f p or both do not fulfill it or both do
not specifya– thenpi ≺Q p j iff pi ≺Qf p p j . This can
be proved by considering the rank calculation proce-
dure, but we omit the details of the demonstration due
to the lack of space. Thanks to the above property, the
user can refineQ asQf p knowing that, when brows-
ing results ofQ, the relative order among profiles that
agree ona is the same she would find among the ones
deriving fromQf p.

4 IMPLEMENTATION DETAILS

I.M.P.A.K.T. is a multi-user, client-server appli-
cation implementing a scalable and modular architec-
ture. It is developed in Java 1.6 (exploiting J2EE and
JavaBeans technologies) and it uses JDBC and Jena12

as main foreign APIs. Furthermore, it embeds Pel-
let13 as reasoner engine to classify more “complex”
ontologies. If the reference ontology does not present
implicit axioms, it is possible to disable the reasoner
services so improving performances.

The I.M.P.A.K.T. prototype is built upon the
open source database system PostgreSQL 8.314 and
uses:(1) auxiliary tables and views to store the inter-
mediate results with the related scores and(2) stored
procedures and b-tree indexes on proper attributes to
reduce the retrieval time. Moreover, the compliance
with the standard SQL makesI.M.P.A.K.T. avail-
able for a broad variety of platforms.

In the current implementation, all the features in
the user request are considered as negotiable con-
straints by default. The exploited referenceSkills
Ontology basically models ICT domain. It owns
seven entry points (hasDegree, hasLevel, hasIndus-
try, hasJobTitle, hasKnowledge, knowsLanguageand
hasComplementarySkill), six data properties (years
(meaningyears of experience), lastdate, mark, ver-
balLevel, writingLevelandreadingLevel), one object
property (skillType) and nearly 3500 classes.

The skill reference template follows the above
structure (Section 3) –reported in Table 1. Notice that
the data propertylastdateis mandatory only when
the data propertyyears is already defined in a pro-
file feature. Moreover, data properties in the form
{ ≤n a,≥n a,=n a } are usable only in the retrieval
phase whereas in the profile storing phase only=n a is
allowed. Finally, only theknowsLanguageentry point
–referred to the knowledge of foreign languages– fol-

12http://jena.sourceforge.net/
13http://pellet.owldl.org/
14http://www.postgresql.org

lows an autonomous match query structure w.r.t. the
others ones. In fact the three possible data proper-
ties for expressing oral, reading and writing language
knowledge have to be tied to the language itself. In
this case, each data property is an attribute whose do-
main is theLanguagemain category and whose range
is the set{ 1,2,3} where 3 represents an excellent
knowledge and 1 a basic one.

Table 1: Skill Reference Template
Entry point Main Category Feature Description (DL syntax)
hasDegree Degree ∃hasDegree.(Degreeu

(≥,≤,=)nmark)
hasLevel Level ∃hasLevel.(Levelu (≥,≤,=)nmark)
hasJobTitle JobTitle ∃hasJobTitle.(jobTitleu

(≥,≤,=)nyearsu =n lastdate)
hasIndustry Industry ∃hasIndustry.(Industryu

(≥,≤,=)nyearsu =n lastdate)
hasKnowledge Knowledge ∃hasKnowledge.(Knowledgeu

∀skillType.Typeu (≥,≤,=)nyears
u =n lastdate)

hasComplementarySkill Ability ∃hasComplementarySkill.(Ability
u(≥,≤,=)nyearsu∃ =n lastdate)

knowsLanguage Language ∃knowsLanguage.(Languageu
=n readingLevelu=n verbalLevel
u =n writingLevel)

Thanks tolastdatedata property, we can say that
”John Doe” was 4 years experienced of Java but
this happened 4 years ago and at the present time
he knows DBMS by 2 years. In other words, our
system can handle a temporal dimension of knowl-
edge and experience considering time intervals as for
example “now”, “short time ago”, “long time ago”
to improve the score computation process. Actually
I.M.P.A.K.T. uses a step function to weigh the ef-
fective value of the experience according to the for-
mula nt = wt ∗ n. A trivial example will clarify this
feature. Assertions as ”now” or ”one year ago” have
bothwt = 1, hence the value of the related experience
is the same. On the contrary, a time interval repre-
sented as ”two years ago” haswt = 0.85, i.e., the con-
crete value of experience is decreased w.r.t. the pre-
vious cases. When a temporal dimension is specified
in the stored profile,I.M.P.A.K.T. retrieves the best
candidates and calculates the related score according
to the experience valuent and not trivially taking into
accountn.

The adopted ontology has three relevance levels.
The following rules ensue: the entry pointhasKnowl-
edgebelongs to theL1 level, the entry pointshasCom-
plementarySkill, hasJobTitle, hasIndustrybelong to
theL2 level and the entry pointshasLevel, hasDegree,
knowsLanguagebelong to theL3 level. ObviouslyL1
is the most important level andL3 the least significant
one. In the current implementation, the formula (2)
fixesm= 20, i.e., I.M.P.A.K.T. considers as possi-
ble a deviation of 20% w.r.t.n for yearsor mark fea-
tures requested by the user. Moreover, in the formula
(3): N = 3, w2 = 0.75 andw3 = 0.45. These values

have been experienced in several tests involving dif-
ferent specialist users engaged in a proactive tuning
process of the software.

5 I.M.P.A.K.T. GUI

“I’m looking for a candidate having an Engineering
Degree (preferably in Computer Science with a final mark
equal or higher than 103 (out of 110)). A doctoral De-
gree is welcome. S/He must have experience as DBA, s/he
must know the Object-Oriented programming paradigm
and techniques and it is strictly required s/he has a good
oral knowledge of the English language (a good familiarity
with the written English could be great). Furthermore s/he
should be at least six years experienced in Java and s/he
should have a general knowledge about C++ and DBMSs.
Finally, the candidate should possibly have team working
capabilities”.
The previous one could be a typical request of a job-
seeker. It will be submitted to theI.M.P.A.K.T.
by means of the provided Graphical User Interface
(GUI). The above requested features can be summa-
rized as: (1) strict ones: 1.1) Engineering degree;
1.2) DBA experience; 1.3) OO programming; 1.4)
good oral English;(2) preferences: 2.1) Computer
science degree andmark≥ 103; 2.2) doctoral degree;
2.3) Java programming andexperience≥ 6years; 2.4)
C++ programming; 2.5) DBMSs; 2.6) team working
capabilities; 2.7) good written English.
They are shown in the (e) panel of Figure 4 whereas
deriving ranked results are reported in Figure 5. The
GUI for browsing the ontology and to compose the
query is also shown in Figure 4. Observe that the in-
terface for defining/updating the candidate profile is
exactly the same.

With reference to Figure 4, (a), (b) and (d) pan-
els allow the job-seeker to compose her semantic-
based request. In fact, in the (a) menu all the entry
points are listed, the (b) panel allows to search for on-
tology concepts according to their meaning, whereas
the (d) part enables the user to explore both taxon-
omy and properties of a selected concept. The related
panel is dynamically filled. The (e) panel in Figure
4 enumerates all the composing features. For each
of them, theI.M.P.A.K.T. GUI allows: (1) to de-
fine the “kind” of feature (strict or negotiable);(2) to
delete the whole feature;(3) to complete the descrip-
tion showing all the elements (concepts, object prop-
erties and data properties) that could be added to the
selected feature;(4) to edit each feature piece as well
as existing data properties. Finally, the (c) panel en-
ables searches as for example“I’m searching a can-
didate like John Doe”. In this case, the job-seeker

fills first and/or last name field of the known candi-
date and the system will consider her/him profile as
starting request whose features are set as negotiable
constraints by default. The user can view the query
–automatically generated– and furthermore s/he can
edit it before starting a new search.

In Figure 5 the results GUI is shown. Part (a)
presents the ranked list of candidates returned by
I.M.P.A.K.T. with the related score. For each of
them, the job-seeker can ask for:(1) viewing the CV;
(2) analyzing the employment and personal informa-
tion and(3) executing the match explanation proce-
dure. Match explanation outcomes are presented in
the (c) panel, whereas in the (b) panel an overview of
the request is shown (differentiating strict constraints
from preferences). Observe that the system assigns a
numeric identifier –namelyID f eature– to each query
feature. It will be used in the explanation phase to cre-
ate an unambiguous relationship among the features
in the panel (b) and the ones in the panel (c).

Let us exploit the second ranked result to explain
the system behavior. It corresponds to “Mario Rossi”
–as shown in Figure 5– which totals 77% w.r.t. the
above formulated request. Why not a 100% score?
Notice that, at the present time, “Mario” has the fol-
lowing programming competences:
1) ∃hasKnowledge.(Javau=5 yearsu=2008−07−21 lastdate);
2) ∃hasKnowledge.(VisualBasicu=5 yearsu=2008−07−21 lastdate);
3) ∃hasKnowledge.(C++u =4 yearsu=2008−07−21 lastdate).

Hence, if one considers the requested feature
∃hasKnowledge.(Javau ≥6 years)(ID f eatures= 9), the
I.M.P.A.K.T. explanation returns the following:
a) ∃hasKnowledge.(Javau=5 yearsu=2008−07−21 lastdate)

b) ∃hasKnowledge.(OOprogrammingu =5 yearsu=2008−07−21 lastdate)

as fulfilled features (they correspond to desired can-
didate characteristics), but they are also interpreted
as conflicting ones because the experience years not
fully satisfy the request.

In particular, the∃hasKnowledge.(OOprogramming
u =5 yearsu =2008−07−21 lastdate) is considered as a
fulfilled feature thanks to the “Mario’s” competence
about VB. Finally, besides the conflicting features,
“Mario Rossi” also has some underspecified ones and
then, he cannot fully satisfy the job-seeker request.
S/he can enrich her/his original query selecting some
additional features among them displayed in the re-
lated panel. The checked ones are automatically
added to the original query panel (part(e) in Figure
4) and they can be further enriched or modified as the
other features.

(a)

(b)

(c) (d) (e)

Figure 4: Query composition GUI

(a)

(b)

(c)

Figure 5: Results and score explanation GUI

6 PERFORMANCE EVALUATION

I.M.P.A.K.T. has been ran upon an Intel Dual
Core server, equipped with a 2.6 GHz processor and a
3 GB RAM. The application has been tested by means
of three kinds of query with a different expressive-
ness in order to obtain an omni-comprehensive evalu-
ation of its capabilities. The first query –namedQ1–
is only composed by preferences rather generic w.r.t.
the ontology taxonomy (see Table 2 for details), the
Q2 query is composed of strict requirements and pref-
erences (it is reported on the (e) panel of Figure 4)
and finallyQ3 is only composed by preferences more
specific thanQ1 features (see Table 3 for further spec-
ifications).

Table 2: Query Q1 - generic soft constraints
Category Negotiable Feature (DL syntax)
Degree ∃hasDegree.(Managerial Engineering)

u∃hasDegree.(Computerscienceengineering)
JobTitle ∃hasJobTitle.(ComputerSo f twareEngineer

u≥3 years)
Knowledge ∃hasKnowledge.(OOprogrammingu≥4 years)
Complementary Skill ∃hasComplementarySkill.(Cooperation)
Language ∃knowsLanguage.(English

u =3 verbalLevel)

Table 3: Query Q3 - specific soft constraints
Category Negotiable Feature (DL syntax)
Degree ∃hasDegree.(Managerial Engineeringu≥104 mark)
Level ∃hasLevel.(Doctorate)
JobTitle ∃hasJobTitle.(Pro ject Manageru≥3 years)
Industry ∃hasIndustry.(IT So f twareDevelopmentu≥2 years)
Knowledge ∃hasKnowledge.(Javau∃years.≥3)

u∃hasKnowledge.(UML) u∃hasKnowledge.(DBMS)
u∃hasKnowledge.(pl/SQL)

Complementary ∃hasComplementarySkill.(Cooperation)
Skill u∃hasComplementarySkill.(ComplexProblemSolving)
Language ∃knowsLanguage.(Englishu≥2 verbalLevel

u≥2 readingLevelu≥2 writingLevel)

Moreover, we have considered datasets automat-
ically generated with an increasing size from 300 to
2100 profiles, where each profile has nearly 10 fea-
tures for each main category. Hence,property R ta-
bles –actually used for implementing both Strict and
Soft Match– store tuples ten times grater than the one
in theprofile table. For each dataset, the Figure 6
shows the retrieval time obtained by averging 50 sub-
sequent executions.

First results have been calculated without consid-
ering delays caused by client-server communication
and connection overhead, as they are quite not influ-
ent. Note that, for theQ2 query, the retrieved pro-
files are reported in Figure 5. They are independent
datasets as the strict matching procedure always re-
turns the same five results. Finally, it has to be ob-
served that for queries only expressing preferences,
the retrieval time quite linearly increases with the data
size, i.e., time nearly doubles as data size grows-up

6-7 times; whereas if the results number does not
change (as in theQ2 case), the retrieval time increases
more slowly.

600

700

800

300

400

500

t
[m

s] Q1

Q2

Q3

100

200

300
Q3

0

300 900 1500 2100

Stored Profiles

Figure 6:I.M.P.A.K.T. performances

7 CONCLUSION AND FUTURE
WORK

The paper presentsI.M.P.A.K.T., a novel logic-
based tool for efficiently managing technical com-
petences and experiences of candidates in the e-
recruitment field. The features of a required job posi-
tion can be described as mandatory requirements and
preferences. Exploiting only SQL queries, the sys-
tem returns ranked profiles of candidates along with
an explanation of the provided score. Preliminary
performance evaluation conducted on several datasets
shows a satisfiable behavior. Future work aims at en-
abling the user to optimize the selection of requested
preferences by properly weighting the relevance of
each of them and at testing other strategies for score
calculation refinement in the match process.

REFERENCES

Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D.,
and Patel-Schneider, P. (2002).The Description Logic
Handbook.

Bechhofer, S., Horrocks, I., and Turi, D. (2005). The OWL
Instance Store: System Description. InThe 20th Inter-
national Conference on Automated Deduction(CADE
’05), pages 177–181.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. InThe First Inter-
national Semantic Web Conference (ISWC ’02), pages
54–68.

C. Li, K. C.-C. Chang, Ihab F. Ilyas and S. Song (2005).
RankSQL: Query Algebra and Optimization for Rela-
tional Top-k Queries. pages 131–142. ACM.

Chomicki, J. (2002). Querying with Intrinsic Preferences.
In Advances in Database Technology - EDBT 2002,
pages 34–51.

Chomicki, J., Godfrey, P., Gryz, J., and Liang, D. (2005).
Skyline with Presorting: Theory and Optimizations.
In IIPWM’05, pages 595–604.

Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F. M.,
and Mongiello, M. (2005a). Concept abduction and
contraction for semantic-based discovery of matches
and negotiation spaces in an e-marketplace. 4(4):345–
361.

Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F. M., and
Ragone, A. (2005b). Knowledge elicitation for query
refinement in a semantic-enabled e-marketplace. In
ICEC 05 ACM Press, pages 685–691. ACM.

Das, S., Chong, E. I., Eadon, G., and Srinivasan, J.
(2004). Supporting ontology-based semantic match-
ing in RDBMS. InThe 30th International Conference
on Very Large Data Bases (VLDB’04), pages 1054–
1065. VLDB Endowment.

Di Noia, T., Di Sciascio, E., Donini, F. M., and Mongiello,
M. (2004). A System for Principled Matchmaking in
an Electronic Marketplace. 8(4):9–37.

Döring, S., Preisinger, T., and Endres, M. (2008). Advanced
preference query processing for e-commerce. InThe
2008 ACM symposium on Applied computing (SAC
’08), pages 1457–1462, New York, NY, USA.

Goncalves, M. and Tineo, L. (2006). SQLf vs. Skyline -
Expressivity and Performance. InIEEE International
Conference on Fuzzy Systems, pages 2062–2067.

Hafenrichter, B. and Kießling, W. (2005). Optimization
of relational preference queries. InADC ’05, pages
175–184, Darlinghurst, Australia. Australian Com-
puter Society, Inc.

Hristidis, V., Koudas, N., and Papakonstantinou, Y. (2001).
PREFER: A system for the efficient execution of
multi-parametric ranked queries. pages 259–270, New
York, NY, USA. ACM.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. (2004).
Supporting top-k join queries in relational databases.
13(3):207–221.

Kießling, W. (2002). Foundations of preferences in
database systems. pages 311–322.

Kießling, W., Fischer, S., and Döring, S. (2004). COSIMA
B2B - Sales automation for E-procurement. InThe
IEEE International Conference on E-Commerce Tech-
nology (CEC ’04), pages 59–68, Washington, DC,
USA. IEEE Computer Society.

Kießling, W. and Köstler, G. (2002). Preference SQL - de-
sign, implementation, experiences. pages 990–1001.

Li, C., Soliman, M. A., Chang, K. C.-C., and Ilyas, I. F.
(2005). RankSQL: supporting ranking queries in re-
lational database management systems. pages 1342–
1345. VLDB Endowment.

P. Bosc and O. Pivert (1995). SQLf: a relational database
language for fuzzy querying.IEEE Transactions on
Fuzzy Systems, 3(1):1–17.

Pan, Z. and Heflin, J. (2003). DLDB: Extending Rela-
tional Databases to Support Semantic Web Queries.
In The First International Workshop on Practical and
Scalable Semantic Systems (PSSS1), volume 89, pages
109–113. CEUR-WS.org.

Wilkinson, K., Sayers, C., Kuno, H. A., and Reynolds, D.
(2003). Efficient RDF Storage and Retrieval in Jena2.
In The first International Workshop on Semantic Web
and Databases (SWDB’03), pages 131–150.

Yu, H., Hwang, S.-W., and Chang, K. C.-C. (2005).
RankFP: A Framework for Supporting Rank Formu-
lation and Processing. pages 514–515, Washington,
DC, USA.

