
Top-k Retrieval for Automated Human Resource
Management

Umberto Straccia1, Eufemia Tinelli2, Tommaso Di Noia2, Eugenio Di Sciascio2 and
Simona Colucci2

ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
SisInfLab-Politecnico of Bari, via Re David 200, I - 70125 Bari,Italy

straccia@isti.cnr.it
{e.tinelli,t.dinoia,disciascio,s.colucci}@poliba.it

Abstract. We present a knowledge-based system, for skills and talent manage-
ment, exploiting semantic technologies combined with top-k retrieval techniques.
The system provides advanced distinguishing features, including the possibility to
formulate queries by expressing both strict requirements and preferences in the re-
quested profile and a semantic-based ranking of retrieved candidates. Based on the
knowledge formalized within a domain ontology, the system implements an ap-
proach exploiting top-k based reasoning services to evaluate semantic similarity
between the requested profile and retrieved ones. System performance is discussed
through the presentation of experimental results.

1 Introduction

Nowadays more and more companies choose to employ e-recruiting systems to automat-
ically assign vacant job positions. Such systems allow for electronically managing the
whole recruitment process, reducing the related cost. In available skill management sys-
tems, information about candidates employment and personal data as well as certifica-
tions and competence is usually modeled through relational databases with customized
and structured templates.

Nevertheless, even though a Data Base Management System (DBMS) is surely suit-
able for storage and retrieval, relational query languages do not allow for the flexibility
needed to support a discovery process as complex as recruitment. The order by state-
ment and the min and max aggregation operators are generally used to retrieve the best
tuples but, in real scenarios, there are no candidates that are better than the others ones
w.r.t. every selection criteria. Moreover, if exact matches are lacking, worse alternatives
must be often accepted or the original requirements have to be negotiated for compro-
mises.

Logic-based techniques and technologies permit instead to make more efficient and
flexible the recruitment process. The system we present here exploit logic-based tech-
niques to perform a matchmaking process between available candidate profiles and va-
cant job positions according to mandatory requirements and preferences provided by a
recruiter. In order to perform it, a language suitable for data intensive applications with
a good compromise between expressiveness and computational complexity is needed.
The approach we propose performs non-exact match through top-k retrieval techniques:



it uses a match engine which performs top-k queries over a DLR-lite [2] Knowledge
Base (KB) providing a ranked list of candidates.

The system translates a user request into a union of conjunctive queries for retrieving
the best candidate to cover a given position. Hence, in order to perform a match both the
user request and candidates CVs (which we generally call profiles) are defined w.r.t.
the same Skills Ontology, designed in (a subset of) OWL DL, to model experiences,
education, certifications and abilities of candidates..

In order to understand the advantages of our system w.r.t. not logic-based solutions,
we provide here a tiny example: imagine you are a recruiter, with the following re-
quest:”I’m looking for an expert in Artificial Intelligence with an experience of at least
two years and he/she must have a doctorate”. Let us suppose that there are three can-
didates Sarah, Paul and Bill skilled as presented in Figure 1 and that the three of them
have a doctoral degree fulfilling the strict constraint of the user request. Looking both

Name Knowledge
Sarah Excellent experience in Business Intelligence (5 years) ...
Paul 1 years experienced in Knowledge Representation and Fuzzy Logic. Good

knowledge of OWL, DLs, DL-lite family, ...
Bill Skilled in ontology modeling with knowledge of semantic technologies ...

Fig. 1. Example of candidate skills

at the three profile descriptions and at the original request, we will rank the three candi-
dates as (1) Paul; (2) Bill; (3) Sarah w.r.t. the preference expressed by the user. In fact,
reasonably, the skills of Paul are very close to the requested ones even if he does not
fully satisfy the requested experience (in years). On the other side, since ontology and
semantic technologies relate to Artificial Intelligence Bill skills seems to be more useful
than Sarah ones. It is easy to see that the only way to automatically perform such a rank-
ing is exploiting a semantic-based approach, making use of a domain ontology modeling
competence hierarchies and relations. Moreover, thanks to the information modeled in
the ontology, the system is able to return all scores computed for each feature of the
retrieved profiles.

In the remaining we proceed as follows: Section 2 shortly recalls language and al-
gorithms we adopted. In Section 3 the proposed system is presented with particular
reference to the evaluation of its performance. Finally, conclusions close the paper.

2 System background: Top-k Retrieval for DLR-Lite

For computational reasons the particular logic we adopt is based on an extension of the
DLR-Lite [2] Description Logic (DL) [1] without negation. DLR-Lite is different from
usual DLs as it supports n-ary relations (n > 1), whereas DLs support usual unary
relations (called concepts) and binary relations (called roles). The DL will be used in
order to define the relevant abstract concepts and relations of the application, while data
is stored into a database. On the other hand, conjunctive queries will be used to describe
the information needs of a user and to rank the answers according to a scoring function.



The logic extends DLR-Lite by enriching it with build-in predicates. Conjunctive queries
are enriched with scoring functions that allow to rank and retrieve the top-k answers, that
is, we support Top-k Query Answering [4–8], (find top-k scored tuples satisfying query),
e.g., “find candidates with excellent knowledge in DLR-Lite”, where EXCELLENT is
a function of the years of experience.

Due to lack of space, we do not delve into details about the query and representation
language at the basis of top-k retrieval problem (detailed in [7] for the interested reader)
and just recall its definition in the following.

Top-k Retrieval. Given a knowledge base K, and a union of conjunctive queries q,
retrieve k tuples 〈c, s〉 that instantiate the query relation q with maximal score (if k such
tuples exist), and rank them in decreasing order relative to the score s, denoted

ansk(K,q) = Topk ans(K,q) .

A knowledge base K = 〈F ,O〉 consists of a facts component F and an Ontology
component O. Informally, facts component is used to store data into a database and the
ontology component is used to define the relevant abstract concepts and relations of the
application domain.

A query q is of the form

q(x)[s] ← ∃y R1(z1), . . . , Rl(zl),
OrderBy(s = f(p1(z

′
1), . . . , ph(z′h))

(1)

where

1. q is an n-ary relation, every Ri is an ni-ary relation,
2. x are the n distinguished variables;
3. y are so-called non-distinguished variables and are distinct from the variables in x;
4. zi, zj

′ are tuples of constants or variables in x or y. Any variable in x occurs in
some zi. Any variable in zj

′ occurs in some zi.;
5. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈

[0, 1]m. Such predicates are called expensive predicates in [3] as the score is not
pre-computed off-line, but is computed on query execution. We require that an n-
ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′ such
that m < n and p = p′. Informally, all parameters are needed in the definition of p;

6. f is a scoring function f : ([0, 1]m)h → [0, 1]m, which combines the scores of the
h fuzzy predicates pj(c′′j ) into an overall score to be assigned to the rule head q(c).
We assume that f is monotone, that is, for each v,v′ ∈ ([0, 1]m)h such that v 6 v′,
it holds f(v) 6 f(v′), where (v1, . . . , vh) 6 (v′1, . . . , v

′
h) iff vi 6 v′i for all i.

7. We also assume that the computational cost of f and all fuzzy predicates pi is
bounded by a constant.

The detailed description of the algorithm embedded in our system to solve top-k
retrieval problem is beyond the scope of this work. The algorithm is an extension of
the one described in [2, 5, 7]) and has been implemented also as part of the SoftFacts
system 1.

1 http://gaia.isti.cnr.it/˜straccia/software/SoftFacts/
SoftFacts.html



3 System evaluation

The proposed system has been implemented by plugging the Top-K DLR-Lite retrieval
approach into I.M.P.A.K.T., a system for skills and knowledge management de-
veloped by Data Over Ontological Models s.r.l.2. The efficiency and scalability of the
approach has been tested using the skill ontology underlying I.M.P.A.K.T.. Both re-
quests and candidate profiles have been modeled w.r.t. to this ontology containing 2594
relations, both unary (classes) and n-ary ones, and 5119 axioms. The main structure of
the ontology is depicted in Figure 2.

Fig. 2. A graphical representation of the ontology structure.

Level represents profile education such as certifications, masters, doctorate, etc.;
Knowledge represents technical skill and specific competences of the candidate; Com-
plementarySkill represents abilities and hobbies of the candidate; JobTitle represents
work experiences of the candidate; Industry representing sectors (institutes, research lab-
oratories, companies, etc.) in which candidate works/worked; Language represents the
knowledge of foreign languages; Ability is used to represent the so called ”soft skills“
such as team leadership, cooperation, etc. Data properties, have been used to represent
years of experience, degree final mark and knowledge level of foreign languages.

The system exploits the user interface of I.M.P.A.K.T., shown in Figure 3. Pan-
els (a), (b) and (d) allow the recruiter to compose her semantic-based request. In fact,
in menu (a) all the entry points are listed whilst panel (b) allows to search for ontology
concepts according to their meaning and section (d) enables the user to explore both tax-
onomy and properties of a selected concept. Entry points in menu (a) represent, to some

2 http://www.doom-srl.it/



Fig. 3. Query composition GUI

extent, the main classes and relations represented in Figure 2. Once an item is selected
in panel (d), the corresponding panel, representing the item itself, is dynamically filled
and added to panel (e). This latter enumerates all the requested features in the query.
For each of them, the GUI of I.M.P.A.K.T. allows: (1) to define if the feature is
strict (crisp) or negotiable (fuzzy); (2) to delete the whole feature; (3) to complete the
description showing all the elements (concepts, object properties and data properties)
that could be added to the selected feature; (4) to edit each feature piece as well as exist-
ing data properties. Finally, panel (c) enables searches like “I’m searching a candidate
like John Doe” i.e., it is useful to model all those situations where you are looking for a
candidate whose skills and knowledge are similar to the ones of John Doe. In this case,
the job-seeker fills first and/or last name field of the known candidate and the system
consider her/his profile as starting request. The user can view the query –automatically
generated– and eventually she can edit it before starting a new search.

In the experiments we carried out, we considered 100.000 automatically generated
CVs and stored them into a database having 17 relational tables. In Figure 4 we show
the ontology axioms mapping the relational tables involved in the proposed queries, in
order to provide the reader with the alphabet of the query language. Each axiom renames
with the role name given as first parameter the table defined as second parameter with
all its fields. We build several queries, with/without scoring atom and submitted them
to the system, with different values for k in case of top-k retrieval (k ∈ {1, 10}). We



(MAP-ROLE Profile Profile (profID, FirstName, LastName, Genre,
BirthDate, CityOfBirth, Address, City, ZipCode, Country, IdentityCode,
PhoneNumber, Email, WebPage, Nationality, ResidentIn,
SuddenJobAvailability, JobLocation, FlexibleWorkHours,
TravelingAvailability, CertificationInstitute, Salary, CarAvailability))
(MAP-ROLE degreeName Degree (degID, Name))
(MAP-ROLE knowledgeName Knowledge (knowID, Name))
(MAP-ROLE knowledgeLevelName KnowledgeLevel (knowLevelID, Name))
(MAP-ROLE knowledgeTypeName KnowledgeType (knowTypeID, Name))
(MAP-ROLE knowledgeLevelName KnowledgeLevel (knowLevelID, Name))
(MAP-ROLE knowledgeTypeName KnowledgeType (knowTypeID, Name))
(MAP-ROLE hasDegree HasDegree (profID, classID, Mark))
(MAP-ROLE hasKnowledge HasKnowledge (profID, classID, Years, Type, Level))

Fig. 4. Excerpt of relational tables ontology mapping

run the experiments using the top-k retrieval SoftFacts system as back-end. No indexes
have been used for the facts in the relational database. The concept and role hierarchy
used in the experiment queries is clarified in Figure 5. The queries at the basis of the

(IMPLIES Engineering_and_Technology Knowledge)
(IMPLIES Artificial_Intelligence Computer_Science_Skill)
(IMPLIES Information_Systems Computer_Science_Skill)
(IMPLIES Computer_Science_Skill Engineering_and_Technology)
(IMPLIES Engineering_Degree Degree)
(IMPLIES Fuzzy Artificial_Intelligence)
(IMPLIES Data_Mining Artificial_Intelligence)
(IMPLIES Machine_Learning Artificial_Intelligence)
(IMPLIES Knowledge_Rappresentation Artificial_Intelligence)
(IMPLIES Natural_Language Artificial_Intelligence)
(MAP-ROLE profileLastName Profile(profID,LastName))
(IMPLIES (SOME[1] profileLastName) Profile)

Fig. 5. Excerpt of concepts and roles hierarchy

experimentation are listed below, together with the corresponding encoding in Top-K
DLR-Lite for the last one.

1. Retrieve CV’s with knowledge in Engineering Technology
2. Retrieve CV’s referred to candidates with degree in Engineering
3. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence and degree

final mark not less than 100/110
4. Retrieve CV’s referred to candidates with knowledge in Artificial Intelligence, degree in En-

gineering with final mark not less than 100/110
5. Retrieve CV’s referred to candidates experienced in Information Systems (not less than 15

years) , with degree final mark not less than 100
6. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelligence and de-

gree final mark scored according to rs(mark; 100, 110)
7. Retrieve CV’s referred to candidates with degree in Engineering and final mark scored ac-

cording to rs(mark; 100, 110)

8. Retrieve top-k CV’s referred to candidates with knowledge in Artificial Intelligence, degree
in Engineering with final mark scored according to rs(mark; 100, 110)



9. Retrieve CV’s referred to candidates with knowledge in Information Systems and with degree
final mark and years of experience both scored according to rs(mark; 100, 110) · 0.4 +
rs(years; 15, 25) · 0.6;

10. Retrieve CV’s referred to candidates with good knowledge in Artificial Intelligence, and with
degree final mark, years and level of experience scored according to rs(mark; 100, 110) ·
0.4 + rs(years; 15, 25) · pref(level; Good/0.6, Excellent/1.0) · 0.6;

q(id, lastName, degreeName, mark, hasKnowledge, years, kType)
← profileLastName(id, lastName), hasDegree(id, degreeId, mark), degreeName(degreeId, degreeName),

hasKnowledge(id, classID, years, type, level), knowledgeLevelName(level, kType), Good(level),
knowledgeName(classID, hasKnowledge), Artificial Intelligence(classID),
OrderBy(s = rs(mark; 100, 110) · 0.4 + rs(years; 15, 25) · pref(level; Good/0.6, Excellent/1.0) · 0.6)

Queries 1-5 are crisp queries. There is no preference expressed and no actual rank-
ing. As each answer has score 1.0, we would like to verify whether there is a retrieval
time difference between retrieving all records, or just the k answers. The other queries
are top-k queries. In query 9, we show an example of score combination, with a pref-
erence on the number of years of experience over the degree’s mark, but scores are
summed up. In query 10, we use the preference scoring function

pref(level; Good/0.6, Excellent/1.0)

that returns 0.6 if the level is good, while returns 1.0 if the level is excellent. In this way
we want to privilege those with an excellent knowledge level over those with a good
level of knowledge. In Fig.6 we report the output of query 10.

Fig. 6. Retrieval output of query 10.

The tests have been performed on a MacPro machine with Mac OS X 10.5.5, 2 x 3
GHz Dual-Core processor and 9 GB or RAM and the results are shown in Fig. 7 (time
is measured in seconds). Let us consider few comments about the results:

– overall, the response time is quite good (almost fraction of second) taking into ac-
count the non negligible size of the ontology, the number of CVs and that we did
not consider any index for the relational tables;

– if the answer set is large, e.g., query 1, then there is a significant drop in response
time, for the top-k case;

– for each query, the response time is increasing while we increase the number of
retrieved records.



Size 100000
Query All top-1 top-10 |ans(K, q)|

1 12.344 3.596 6.182 3985
2 0.375 0.116 0.125 445
3 0.366 0.117 0.118 19
4 4.263 3.877 3.897 8
5 0.397 0.325 0.357 19
6 0.104 0.103 0.099 40
7 0.209 0.178 0.189 128
8 4.086 3.895 3.998 20
9 0.471 0.422 0.395 201
10 0.391 0.357 0.373 19

Average 2.301 1.295 1.573 488
Median 0.394 0.341 0.365 30

Fig. 7. Retrieval times.

4 CONCLUSION AND FUTURE WORK

We presented an innovative and scalable logic-based system for efficiently managing
skills and experiences of candidates in the e-recruitment field. The system grounds on
a Skill Ontology in order to return a ranked list of profiles and on scoring functions in
order to weight each feature of the retrieved profiles. Differently from existing recruit-
ment systems, our approach allows to express a user request as the composition of both
mandatory requirements and preferences, by means of top-k retrieval techniques. The
implemented retrieval framework was embedded into an existing system for skill man-
agement and experiments conduced on a preliminary profiles dataset show a satisfiable
behavior. Future work aims at evaluating system performance on several datasets and at
providing user-friendly explanation facilities to better clarify scores of obtained results.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. In Proc. of KR-06, pages 260–270, 2006.

3. K. C.-C. Chang and S. won Hwang. Minimal probing: Supporting expensive predicates for
top-k queries. In SIGMOD Conference, 2002.

4. T. Lukasiewicz and U. Straccia. Top-k retrieval in description logic programs under vagueness
for the semantic web. In Proc. of SUM-07, number 4772 in LNCS, pages 16–30. Springer
Verlag, 2007.

5. U. Straccia. Answering vague queries in fuzzy DL-Lite. In Proceedings of the 11th Interna-
tional Conference on Information Processing and Managment of Uncertainty in Knowledge-
Based Systems, (IPMU-06), pages 2238–2245. E.D.K., Paris, 2006.

6. U. Straccia. Towards top-k query answering in deductive databases. In Proc. of SMC-06, pages
4873–4879. IEEE, 2006.

7. U. Straccia. Towards top-k query answering in description logics: the case of DL-Lite. In Proc.
of JELIA-06, number 4160 in LNCS, pages 439–451, Liverpool, UK, 2006. Springer Verlag.

8. U. Straccia. Towards vague query answering in logic programming for logic-based information
retrieval. In Proc. of IFSA-07), number 4529 in LNCS, pages 125–134, Cancun, Mexico, 2007.
Springer Verlag.


