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Abstract. We present a novel logic-based framework to automate multi-issue bi-
lateral negotiation in e-commerce settings. The approach exploits loganas c
munication language among agents, and optimization techniques in orde to fi
Pareto-efficient agreements. We introdd€\'), a propositional logic extended
with concrete domains, which allows one to model relations among issa#s (b
numerical and non-numerical ones) via logical entailment, differeriypfwell-
known approaches that describe issues as uncorrelated. THRgAhit is pos-
sible to represent buyer’s request, seller’'s supply and their regpgctferences

as formulas endowed with a formal semantis}, “if | spend more than 30000

€ for a sedan then | want more than a two-years warranty and a GPS system
included. We mix logic and utility theory in order to express preferences in a
qualitative and quantitative way.

We illustrate the theoretical framework, the logical language, the onergho
gotiation protocol we adopt, and show we are able to compute Paretiemffic
outcomes, using a mediator to solve an optimization problem. We provettte co
putational adequacy of our method by studying the complexity of the probfe
finding Pareto-efficient solutions in our setting.

1 Introduction

Negotiation crosses the boundaries of several disciplinekiding economics, com-
puter science, decision support theory, organizatioredrh A number of definitions
have been proposed in the literature referring to negotiatione of them completely
exhaustive or covering the boundless negotiation arerfeeiadrious domains. We refer
here to the one by Parsons et al. [29], that defines negatiatidthe process by which
a group of agents communicate with one other to try and coraeriatually acceptable
agreement on some matter.” Bilateral negotiation findsiegipbns in different scenar-
ios, each one with its own peculiarities and issues. Amohgrstresource and task al-
location problems €.g, scheduling, logistics, bandwith usageline auctiongeBay
probably being the most renowned exampkenarketplacesln this paper we obvi-
ously do not claim to propose a negotiation mechanism deifab all the above cited
scenarios, as each scenario has its own key dimensionsamiess crucial, depending
on the scenario itself: a mechanism having some good clegistats for some domain,
can be, indeed, completely unsuitable for another one. Wesfen mechanisms to



automate negotiation in peer-to-peer (P2P) e-marketplg8j, where products (cars,
houses, Personal Computers, etc.) or services (travelitmpokedding service, etc.)
can be, at the same time, provided by suppliers or searchgmbteyntial customers.
In the rest of the paper we refer, by way of example, withoas lof generality, to an
automotive e-marketplace

In the framework we study, the negotiation problem can beeastarized by the
following key dimensions:

— Multiple issues.Differently from e-marketplaces dealing with undifferiatéd prod-
ucts (commodities as oil, concrete, etc.) or stocks, whehgprice, time or quantity
have to be taken into account, in a P2P e-marketplace algo fethtures have to be
considered during the negotiation process. As a mattectaffden a potential buyer
browses an e-marketplace, she may look for a geogl, @ car) fulfilling her needs
and/or wishes, so that not only the price is relevant, but atker features, such as
e.g, warranty or delivery time, as well as look, model, comfartd so on. Usually,
issues are described as uncorrelated terms, without airgidany underlying se-
mantics. Moreover, issues may not be established in ad\aefere the negotiation
starts) as it is usually assumed in many problems of res@andeask allocation (see
Section 8 for an extensive discussion). In our approach, agetramulti-issue bilat-
eral negotiatiorproblem where issues can be in some way interrelated (| would
like a station wagon endowed with shadow rear windows ifdtsicis black”).

— Language.Agents need to communicate with each other in order to egpraisonly
what they are searching for/offering, but also to expresfepences on issues or bun-
dles thereof. A language has to be defined to express predngtle descriptions, as
well as preferences on issues characterizing the proéudits itself,e.g, the buyer
can state: (1)1 can spend up to 2500€E for a passenger car only if there is a nav-
igator pack included; while the seller can provide (2) ‘©&edan with a price not
less than 23000 with a GPS system includgdbw can we determine if there is a
negotiation space between them? In order to handle prefesenvolving numerical
features and non-numerical ones, we define (Section 2)otie®(N') as commu-
nication language, a Propositional Logic endowed with CetecDomains . So the
above preferences can be expressed agdyenger Car A(pri ce < 25000) =
Navi gat or Pack and (2)Sedan A (pri ce > 23000) A GPS_syst em where re-
lations among issues are made explicit ingical Theory (i.e., anontology), where
we can express that3edan is a type of Passenger ¢@edan = Passenger Car)
or that aSuv is not a SedafsUV = —Sedan) or still, find the meaning dllavigator
pack(Navi gat or Pack < Satel | i t eAl ar mA GPS_syst en).

— Utilities. Once agents have expressed their own preferences, it istampdo com-
pare them, weighting each agent’s preferences. This caareerdnking preferences
in an ordinal or cardinal way. Furthermore we are interestatdonly inlocal pref-
erences(over logical formulas), but also iglobal preferencegover entire agree-
ments). Hence, we compare and evaluate different kinds r@&feagent to find the
most suitable agreements for both agents. To this end weedafintility function
taking into account how much preferences are satisfied ifinaeagreement, their
relative relevance and how much (for numerical featuresh) paeference is satisfied,
see Sections 3 and 4.



— Information. Another important dimension of the negotiation problemvitiat |
knowabout my opponent. An agent can know everythipge{ferencesandworth of
them), as well as only preferences (but not their worth) dhnimg about its opponent.
The less he knows the more it is difficult to model a negotratitechanism (Kraus
[20] made an extensive discussion on this point). We adagindralized approach
where agents reveal their preferences and worth of thentoalyrusted mediator. As
pointed out by Raiffa et al. [35, p.311], usually, bargasneray not want to disclose
their preferences or utilities to the other party, but they be more willing to reveal
this information to a trusted—automated—mediator, helpiagatiating parties to
achieve efficient and equitable outcomes.

— Agreement.Usually, the main target of an agent is to reach a satisfiajieeanent
in a reasonable amount of communication rounds. Furthernkmowing if such an
agreement is als@areto-efficientis a matter that can not be left out. grotocol
and strategieshave to be defined in order to ensure that the reached agreé&@men
Pareto-efficient. Besides, it is fundamental to as$esg hardit is to find Pareto-
efficient agreements and check whether a given agreemeatasorefficient. In our
framework, we propose@ne-shotprotocol with the intervention of mediatorwith
a proactive behavior: it collects agent’s preferences aogdgses to each participant
afair Pareto-efficient agreement (see Section 5.2). For whatecoacstrategy, the
players reveal their preferences to the mediator and thece @ has computed a
solution, they can accept or refuse the agreement propostein; they refuse if
they think possible to reach a better agreement lookingriotheer partner, or for a
different set of bidding rules. Notice that here we do notsider the influence of the
outside options$n the negotiation strategy [25].

— Mediator. As hinted above, we adopt a centralized approach with a roediat-
ing as a nonbinding arbitrator [35]. Although we admit agmtees to negotiation
involving a mediation entity are often controversial ($@t8), we stress here its im-
portance in our p2p e-marketplace framework. Its roles sifelbows: it collects and
stores advertisements (requests and offers), it allowstage keep preferences and
their worth as private information, it solves the optimiaatproblem (Section 5),
which allows to determine fair Pareto-efficient agreemeatsl finally notifies the
bidders, paving the way to the actual transaction. Furtbeenthe actual deploy-
ment of our approach in a real-world system can be made edoaltynfeasible if
the mediator charges a fee for each successful transactgrfpr each proposed
agreement accepted by both parties.

Observe that in our framework it is possible to mogesitiveandnegativeprefer-
ences {l would like a car either black or gray, but not red; as well asconditional
preferenceg’l would like leather seats if the car is black'involving both numerical
features and non-numerical oné you want a car with GPS system you have to wait
at least one month’or only numerical ones‘accept to pay more than 250@only
if there is more than a two-years warranty”

% We refer to Section 8 for a thorough discussion on centralized/distribp@aches.



Besides we modeajuantitativepreferences; thanks to the weight assigned to each
preference it is possible to determine a relative impogaamong them, rather than
only a total order between thém

Summarizing, the main contributions of this paper inclualdcamework to auto-
mate multi-issue bilateral negotiation; the logical laage? (), able to handle both
numerical features and non-numerical ones, as well as tegept existing relations
between issues and preferences as formulas. The ratiemakes proposal is somehow
obvious: using an ontolog¥ it is possible to catch an inconsistency among prefer-
ences (agents cannot agree on A and B at the same tim& iAis defined as disjoint
from B). On the other hand, the use of a formal ontology allows to discover that an
agent preference is satisfied (implied) by a preferences afiponent, even if this is not
explicitly modeled at the syntactical level. For instaritéam searching for a Passen-
ger car and my opponent offers a Sedan, my preference iy satidfied by the offer
because of the axioms in the ontolo@eflan = Passenger Car ). Knowledge rep-
resentation techniques are hence mixed up with utility th@oorder to express pref-
erences both in a qualitative and quantitative way. We thiepgse a one-shot protocol
with the intervention of a mediator able to compute Pardfioient agreements solving
an optimization problem.

We also prove the computational adequacy of our method lolystg the complex-
ity of the problem of finding Pareto-efficient solutions.

2 Representation of issues

We divide issues involved in a negotiation in two categori&sme issues may express
properties that argue or false, like, e.g, in an automotive domain,t al i anMaker ,
or Al ar mSyst em We represent them as propositional atofis A,, . . . from a finite
setA. Other issues involve numerical features ld& i ver yti me, orpri ce repre-
sented as variable§, f, ..., each one with its specific domaipy, , Dy, , .. ., such as
[0,90] (days) fordel i ver yt i ne, or[1000, 30000] (euros), fopr i ce. The variables
representing numerical features are always constrainecbbyparing them to some
constant, likepri ce < 20000, ordel i veryti me > 30, and such constraints can
be combined into complex propositional requirements—atsolving propositional
issues—e.g, | t al i anMaker A (price < 25000) A (del i veryti ne < 30) (rep-
resenting a car made in Italy, costing no more than 25000sedmdivered in less than
30 days), oAl ar nByst em=- (del i veryti me > 30) (expressing the seller’s re-
quirementif you want an alarm system mounted you'll have to wait mdrart one
month”). We now give precise definitions for the above intuitionstrbwing from a
previous formalization of so-callezbncrete domaing] from Knowledge Representa-
tion languages.

Definition 1 (Concrete Domains, [2]).A concrete domairD consists of a finite set
A.(D) of numerical values, and a set of predicatégD) expressing numerical con-
straints onD.

4 Notice that the whole approach holds also if the user does not specifightier each pref-
erence, but only a global order on preferences. However, in #sa&, ¢the relative importance
among preferences is missed.



For our numerical features, predicates are always theymerator<C (D) = {>, <
,>, <,=,#}, whose second argument is a constant\irf{ D)°. We note that in some
scenarios other concrete domains could be posslie,colors as RGB vectors in an
agricultural market, when looking for or selling fruits.

Once we have defined a concrete domain and constraints, wiercaally extend
propositional logic in order to handle numerical featuk#f.call this languag® ().

Definition 2 (The languageP(N)). Let A be a set of propositional atoms, adta
set of pairs(f, D) each made of a feature name and an associated concrete domain
Dy, and letk be a value inD. Then the following formulas are iR(N):

1. every atom¥ € A is a formula inP(N)

2. if(f,Dy) € F,k € Dy, andc € {>,<,>,<,=,#} then(fck) is a formula in
PWN)

3. if ¢ andp are formulas inP(N) then—), i) A ¢ are formulas inP(N). We also
usevy V ¢ as an abbreviation for- (- A —p), ¥ = ¢ as an abbreviation for
- V ¢, andy < ¢ as an abbreviation fofy) = ¢) A (¢ = ¥).

We call£ 4 r the set of formulas ifP(N) built using.4 and F.

In order to define a formal semanticsB{\) formulas, we consider interpretation
functionsZ that map propositional atoms inferue, false}, feature names into values
in their domain, and assign propositional values to nuraédonstraints and composite
formulas according to the intended semantics.

Definition 3 (Interpretation and models). An interpretationZ for P(/N) is a function

(denoted as a superscript on its argument) that maps each atom.ninto a truth

value A € {true, false}, each feature namginto a valuef? € Dy, and assigns truth
values to formulas as follows:

— (fck)® =true iff fZckistrueinDy, (fck)? = false otherwise
— (=) = true iff T = false, (v A p)T = true iff both? = true and p? = true,
according to truth tables for propositional connectives.

Given a formulap in P(N), we denote witll |= ¢ the fact thatZ assigngrue to . If
T & » we sayZ is amodelfor ¢, andZ is a model for a set of formulas when it is a
model for each formula.

Clearly, an interpretatiof is completely defined by the values it assigns to proposi-
tional atoms and numerical features. lL&t= {Sedan, GPL} be a set of propositional
atoms,Dpr ice = {O, . ,60000} andDyear warranty = {O, 1,... ,5} be two
concrete domains for the featungsi ce, year _war r ant y, respectively. A model

for both formulas:

Sedan A (GPL = (year warranty > 1)),
(pri ce < 5000)

5 So, strictly speaking'(D) would be a set of unary predicates with an infix notatier,
x > 5is in fact a predicaté’s 5 (x) which ist r ue for all values ofD,. greater than 5 and
f al se otherwise; however, this distinction is not necessary in our formalization.



is Sedan? = true, GPLT = false, year war rant yZ = 0, pri ce? = 4500. Given
a set of formulasl” in P(N) (representing an ontology), we denote by= 7 the
fact thatZ is amodelfor 7. An ontology issatisfiableif it has a model.Z logically
implies a formulap, denoted byl = ¢ iff ¢ is true in all models off . We denote
by M+ = {Z1,...,Z,,}, the set of all models fof , and omit the subscript when no
confusion arises.

The following remarks are in order for the concrete domainsuo e-marketplace-
oriented scenarios:

1. domains areliscrete with auniformdiscretization step. For example, if the seller
states he cannot deliver a car before one month, he is sayadhe delivery time
will be at least in one month and one d&el i veryti me > 32), wheree = 1
(in days).

2. domains aréinite; we denote withmax (D) andmin(Dy) the maximum and min-
imum values of each domaif;.

3. even for the same feature name, concrete domainsaneetplace dependeritor ,
let us considepr i ce in two different marketplace scenarios: pizzas and carns. Fo
the former one, the discretization stejs the€-cent: the price is usually something
like 4.50 or 6.0C<. On the other hand, specifying the price of a car we usualig ha
10500 or 1500€€E; then the discretization step in this case can be fixed a€100

The above Point 1 and the propositional composition of nigakconstraints imply
that the operator§>, <, >, <, =, #} can be reduced to>, <}.

Definition 4 (successor/predecessorsiven two contiguous elemenitsandk;, 1 in
a concrete domai); we denote by:

— s: Dy — Dy the successor function(k;) = k41 = k; + €
— p: Dy — Dy the predecessor functiop(k;1) = k; = ki1 — ¢

Clearly, max(Dy) has no successor amain(D;) has no predecessor. Based on the
above introduced notions, we can reddg(Dy) to {<, >} using the following trans-
formations:

f=k — (f <SRN 2 k) (1)
f#k — (f<K)V(f>F) (2)
f>k—f=(k+e)— f=sk) ®3)
f<k—f<(k—e)— f<pk) (4)

3 Multi-issue Bilateral Negotiation in P (N)

According to Ragone et al. [32], we use logic formulasit\') to model the buyer’s
demand and the seller’'s supply. Relations among issuds poopositional and numer-
ical, are represented by a $Et-for Theory (.e., ontology)—ofP () formulas.

In a typical bilateral negotiation scenario, statementhiwiboth the buyer’s re-
quest and the seller’s offer can be split istoict requirementsand preferencesStrict
requirements represent what the buyer and the seller wdre twecessarily satisfied



in order to accept the final agreement—in our framework we statt requirements
demand/supplyPreferencesre statements involving issues they are willing to nego-
tiate on: preferences may not be satisfied in the final agrmeerabviously, the more
preferences are fulfilled in the final agreement, the moregentawill be satisfied.

Example 1 Suppose to have a buyer’s request like “I would like a seddh {gather
seats. Preferably | would like to pay less than 12@®@urthermore I'm willing to pay
up to 15000€ if warranty is greater or equal than 3 years. | don’t want toypaore
than 17000€ and | don’t want a car with a warranty less than 2 years”. Inglixample
we identify:

demand: | want a sedan with leather seats. | don't want to pay morenth@000<. |
don’'t want a car with a warranty less than 2 years

preferences: Preferably | would like to pay less than 12000 , furthermbne willing to
pay up to 1500GE if warranty is greater or equal than 3 years.

Definition 5 (Demand, Supply, Agreement)Given an ontology/” represented as a
set of formulas ifP (V) representing the knowledge on a marketplace domain

— a buyer'sdemands a formulag3 (for Buyer) inP(A\) such that7 U {3} is satisfi-
able.

— aseller'ssupplyis a formulas (for Seller) in?(N') such thatZ U{c} is satisfiable.

— T is apossible deabetweens ando iff Z = 7 U {0, 8}, that is,Z is a model for
T,o0,ands. We also callZ anagreement

The seller and the buyer model tnand 3 the minimal requirements they accept for
the negotiation. If seller and buyer have set strict attébuhat are in conflict with each
other, that isM 7y, g1 = 0, the negotiation ends immediately because it is impossible
to reach an agreement. If the participants are willing tddattee conflict deal[36], and
continue the negotiation, it will be necessary they revisgrtstrict requirements.

In the negotiation process both the buyer and the selleresgpsome preferences
on attributes, or their combination. The utility functios uisually defined based on
these preferences. We start defining buyer’s and sellexfeances and their associated
utilities: ug for the buyer, and., for the seller.

Definition 6 (Preferences)The buyer'snegotiation preferences = {3, ...,0;} are
a set of formulas iP(), each of them representing the subject of a buyer's prefer-
ence, and a utility functions : B — Q™ assigning a utility to each formula, such that

2ius(Bi) =1

Analogously, the seller'segotiation preference$ = {04, ...,0} are a set of formu-
las inP(N), each of them representing the subject of a seller’s prafargand a utility
functionu, : S — Q™ assigning a utility to each formula, such that; u, (o;) = 1.

Buyer’s request in Example 1 is then formalized as:

3 = Sedan A Leat her _seats A (pri ce < 17000) A
(year warranty > 2)

81 = (pri ce < 12000)

B2 = (year warranty > 3) A (pri ce < 15000)



Both agents’ utilities are normalized to 1 to eliminate @, and make them compa-
rable. Since we assumed that utilities are additiveptieéerence utilityis just a sum of
the utilities of preferences satisfied in the agreement.

Definition 7 (Preference Utilities).Let5 andS be respectively the buyer’s and seller’'s
preferences, and 11,5, be their agreements set. Theeference utilityof an agree-
mentZ € M1y, for a buyer and a seller, respectively, are defined as:

ugpw)(Z) = Z{up(Bi) | T | Bi}
ug py(Z) = X{ug(0;) | T |= 04}

whereX{...} stands for the sum of all elements in the set.

Notice that if one agerd.g, the buyer, does not specify soft preferences, but onlgtstri
requirements, this is modeled ds = true andug » (A (Z) = 1, which reflects the fact
that an agent accepts whatever agreement not in conflictitgitstrict requirements.
From the formulas related to Example 1, we note that whilesiclaring numerical
features, it is still possible to express strict requirete@md preferences on them. Ex-
pressing a strict requirement on numerical features is/atgnt to setting aeservation
value[35] on them. In Example 1 the buyer expresses two reservatifues, one on
price“more than 17000€” and the other on warrant{ess than 2 years’

Both buyer and seller have their own reservation values oh f=ature involved in
the negotiation process. It is the maximum (or minimum) gdtluthe range of possi-
ble feature values to reach an agreemerg, the maximum price the buyer wants to
pay for a car or the minimum warranty required, as well aanftbe seller’'s perspec-
tive the minimum price he will accept to sell the car or the imm delivery time.
Usually, each participant knows its own reservation valoe ignores the opponent’s
one. Referring to price and the two corresponding res@mataluesr; nrj ce and
. price for the buyer an_d the seller respec_tively, if the buyer espegpri ce <
rgpri ce and the selleprice > r_nrjce,incaser, nrjce < rzprice We
have[r, nri ce "spri cel @ aZoneOf PossibleAgreement —ZOPA(pri ce),
otherwise no agreement is possible [35]. More formallyegian agreement and a
featuref, fZ € ZOPA(f) must hold.

Keeping the price example, let us suppose that the maximice fre buyer is
willing to pay is 15000, while the seller minimum allowabléqge is 10000, then we
can set the two reservation valueg:pr j ce = 15000 and-, 1 j ce = 10000, so the
agreement pricevill be in the intervalZOP A(pr i ce) = [10000, 15000].

Obviously, the reservation value is considered as privatanation and will not
be revealed to the other party, but will be taken into acctyrthe mediator when the
agreement will be computed. Since setting a reservatiamevah a numerical feature
is equivalent to set a strict requirement, then, once thesband the seller express
their strict requirements, reservation values conssdiatve to be added to them (see
Example 1).

In order to formally define a Multi-issue Bilateral Negoitiat problem inP(N),
the only other elements we still need to introduce aredtbagreement thresholdalso
called disagreement payoffss, t,. They are the minimum utility that each agent re-
quires to pursue a deal. Minimum utilities may incorporateagent’s attitude toward



concluding the transaction, but also overhead costs iedoir the transaction itself,
e.g, fixed taxes.

Definition 8 (MBN-P(N)). Given aP(N) set of axiomsl, a demand3 and a set
of buyer’s preferencess with utility functionus »(A- and a disagreement threshold
tg, a supplyo and a set of seller’s preferences with utility functionu, p»n- and

a disagreement threshold., a Multi-issue Bilateral Negotiation problem (MBN) is
finding a model (agreement) such that all the following conditions hold:

IETU{op5} (5)
ug Py (Z) = tg (6)
g p(A) (L) 2> to (7)

Observe that not every agreemérit a solution of an MBN, if eitheti, »(x (Z) < to
orugpay(Z) < tg. Such an agreement represents a deal which, althoughysadisf
strict requirements, is not worth the transaction effotsafotice that, since reservation
values on numerical features are modeled@iando as strict requirements, for each
featuref, the conditionfZ € ZOPA(f) always holds by condition (5).

4  Utilities for Numerical Features

Buyer’s/seller’s preferences are used to evaluate how goagossible agreement and
to select the best one. Obviously, also preferences on ncethéeatures have to be

considered, in order to evaluate agreements and how goodraaraent is w.r.t. an-

other one. Let us explain the idea considering the demandayel’s preferences in

Example 1.

Example 1.Referring tog, 0, andgs in Example 1 let us suppose the following offer
6.

o = Sedan A (pri ce > 15000) A (year warranty <5)
Three possible agreements between the buyer and the gellanaong others:

7, : {Sedan™ = true, Leat her _seat s™* = true,
price’ =17000,year warranty”' = 3}

7, : {Sedan”? = true, Leat her _seat s™ = true,
pri ce”™ = 16000, year warranty”> = 4}

75 : {Sedan”® = true, Leat her _seat s™ = true,
pri ce”™ = 15000,year warranty”® =5}

With respect to the above set of agreements, we can sa¥tlimthe most convenient
from the seller’s point of view (and the most disadvantagdou the buyer) whilsZs
represents the worst agreement from the seller's perspe@nd the best one for the
buyer). In fact, if the agreement wds then the seller would get 17068 providing a

8 Forillustrative purpose, in this example we consider an offer wherestritf requirements are
explicitly stated. Of course, in the most general case also the seller pagseis preferences.



warranty of just 3 years rather than getting 15&8elling a car with 5 years warranty
in case the agreement was. In the above set of agreements, seems to be the best
compromise between buyer and seller.

The above example highlights the need for utility functicaking into account the
value of each numerical feature involved in the negotiatimtess. Of course, for each
feature two utility functions are needed; one for the buyers—, the other for the
seller —u, ¢. These functions have to satisfy at least the basic pregestiumerated
below. For the sake of conciseness, we wiitevhen the same property holds both for
ug, f andu(,’f. :

1. uy is normalized to[0, 1] to make agents’ preferences comparable and to avoid
that agents could manipulate their preference revelatiamder to get a better deal
stating a bigger (or smaller) number of preferences. Gikerpair(f, D), it must
be defined over the domain.

2. From Example 1 we note the buyer is more satisfied as the geicreases whilst the
seller is less satisfied. Henag; has to be monotonic and whenevey ; increases
thenu,  decreases and vice versa.

3. There is no utility for the buyer if the agreed value on eris greater or equal
than its reservation valu%’pr i ce =17000 and there is no utility for the seller if
the price is less than or equal tg r j ce =15000. Since concrete domains are
finite, for the buyer the best possible priceﬂm(Dpr i ce) whilst for the seller is
maX(Dpr i ce)- The contrary holds if we refer to year warranty.

Definition 9 (Feature Utilities). Let (f, D) be a pair made of a feature nanfeand
a concrete domaiD; andr; be a reservation value fof. A feature utility function
uy : Dy — [0,1] is a monotonic function such that

— if uy monotonically increases then (see Figure 1)

uf (U) =0,ve [min(Df)v 7ﬂf] (8)
us(max(Dy)) =1

—if uy monotonically decreases then
uf(v) =0,v € [ry, max(Dy)] )
up(min(Dy)) =1

Given a buyer and a seller, ifg ; increases thenm,, ; decreases and vice versa.

The simplest utility functions are the two linear functions

v—min(D .
— waf([JJ;)) ,v € [min(Dy),r¢)

up(v) = (10)
0, v € [ry,max(Dy)]
if it monotonically decreases and

v—max(D
1 — el v € [y, max(Dy))

up(v) = (11)
0,v € [min(Dy),ry]

if it monotonically increases (see Figure 1).



feature utility function of the buyer

u(v) = = feature utility function of the seller
l -
”
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min(D)) Vg, rvg,  max(D)

Fig. 1. Linear utility functions

5 Computing Pareto agreements irfP (N)

Among all possible agreements that we can compute, giventatogy7 as constraint,
we are interested in agreements that are Pareto-efficiemtng them, we are interested
on the ones either maximizing the sum of utilities—maximuntfare—or maximizing
their product—Nash-bargaining solution [27]. We now owlimow an actual solution
can be found solving an optimization problem.

5.1 Objective functions

Here we define functions to be maximized to find a solution togimization problem.
First of all, we introduce a set of fresh propositional atomst. to the ones ind
(see Definition 2) and a new set of equivalence axiomnis.thet:

- {Bi,...,Bk,51,...,5,} bek+ h new propositional atoms different from the ones
in A,
- T’ZTU{BzﬁﬂA’L:L,k}U{SJ <:>O'j|j= 1,,h}

Now, it is easy to see that:

— The new ontology7”’ is equivalent taZ” w.r.t. implication of formulas irC 4z (the
language we used to modE| 3,0 and agents’ preferencgsando ;). That s, given
aformulay € L4 p, if 7' = ¢ thenT = 4. Hence, we can usg’ being sure
that implication relations will be exactly the same we woliétve using’ .

— given an agreemert, we havel = G; iff Z = B; andZ | o, iff 7 = S;. That
is, if B; is true in a modelZ then the corresponding formulg is evaluatedrue
w.r.t. Z (and similarly forS; ands;). In order to check if a preference is evaluated
true in an agreement we can just look at the truthfulness valuesoorresponding
propositional atom.



In order to formulate functions to be maximized involvingefarences expressed
as formulas ifP(N), let {1, ... ,bx} binary variables one-one witfBy, . ..,B;} and
similarly {s1,...,sn} for {Si,...,S,}. The functions representing respectively buyer’s
and seller’s utility over preferences can hence be defined as

k
ug p)(Z) = Z biug(B;) (12)
z;1
e pn)(Z) = ) sjus(0;) (13)
j=1

where, given an agreementb; = 1 if B = true, b; = 0 if B = false and similarly
Sj for Sj.

As highlighted in Section 4, also utilities over numericadfures have to be taken
into account while finding the best solution for both the maad the seller. Hence, for
each featurg involved in the negotiation process we havieature utility function for
the buyerus ; and one for the sellet, ;. For instance, if we considg@r i ce and the
linear function in equations (10) and (11) we likely will lrlav

'U—max(Dpr i Ce)

1 —
ugprice(v) = sprice ™>*Pprice)
0
_ U—min(Dpri Ce)
Us pri ce(v) = m,price ™ Pprijce)
0

5.2 The Optimization Problem

In order to find a Pareto agreement between the traders, veadaefingglobal utility
functions that take into account all their objective funos (both their preference utility
functions and their feature utility functions).

uG (T) = gs(up Ny Us.fus- - - UBL S
= gO'

“S(I) (u0'773(./\/)7u(77f17"'7u‘77fn)

wheren is the cardinality ofF’, i.e,, the number of concrete features involved in the
negotiation process.

Definition 10. Given a MBNP(N), we definamax -suM-MBN-P(N) as the problem
of finding an agreemet for whichu& (I)+ug (Z) is maximal andvAX -PROD-MBN -

P(N) the problem of finding an agreemehfor whichu& (Z) - ug(Z) is maximal.

Clearly, every solution foMAX -suM-MBN-P(N') and MAX -PROD-MBN-P(N) is
also a Pareto agreement, but not vice versa [14].

In addition to the set of functions to maximize, in our sejtive have three different
sets of constraints:



1. the (modified) ontology ' — see the beginning of Section 5

2. strict requirement$ ando, including reservation values over numerical features

3. conditions (6) and (7) of an MBN on disagreement threstpJcind¢, — see the
definition of MBN-P(A/) at the end of Section 3

Notice that the constraints involving disagreements tioks are already linear
ones. In order to model as linear constraints also the orsesitded in points 1 and 2 of
the above enumeration, we proceed as follows.

Clause reduction. Obtain a set of clauseB” s.t. each clause contains only one single
numerical constraint an@”’ is satisfiable iff7’ U {0, 5} does. In order to have such
clauses, if after using standard transformations in clafesen [23] you find a clause
with two numerical constraintg : AV ... (fic;k;) V (fjcik;) pick up a new proposi-
tional atomA and replace, with the set of two clausés

{XliA\/A\/...\/(fiCiki), }
XQ:_‘A\/A\/...\/(ijjkj>

As afinal step, for each clause, replaggl < k) with (f > s(k)) and—(f > k) with
(f < p(k)) (see (3) and 4).

Example 2.Suppose to have the clause

x :1talianMaker v —Ai r Conditioni ngVv
(year warranty > 3) Vv —(pri ce > 20500)

First of all split the clause in the following two

x1:AVvitalianMaker v —Ai r Condi tioningV
(year warranty > 3)

x2 : "AVItalianMaker v —Ai r Condi ti oni ng Vv
~(pri ce > 20500)

then change the second one in

x2 : AV ItalianMaker v —Ai r Conditioni ngV
(pri ce < 20000)

Notice that here we consider= 500 for the concrete domaiﬁ)pr i ce-

The last step is needed in order to have a straight mappinglégical clauses to linear
inequalities as shown in the following.

"It is well known that such a transformation preserves logical entailis&t



Encoding clauses into linear inequalities.We use a modified version of well-known
encoding of clauses into linear inequalitiesd, [28, p.314]) so that every solution of
the inequalities identifies a model Bt’. If we identify true with values in[1 .. . co) and
false with values in[0.. .. 1) each clause can be rewritten in a corresponding inequality.

— map each propositional atorhoccurring in a clausg with a binary variables. If
A occurs negated ig then substitute: A with (1 — a), otherwise substitutd with
a

_ replace(f < k) with max(Dy) — f) and(f > &) with 1 1.2

1
max(Dy)—k (

After this rewriting it is easy to see that, considering-logical or—as classical addi-
tion, in order to have a clauseie the evaluation of the corresponding expression must
be a value grater or equal to 1.

Example 3.If we considemax(Dpy j cg) = 60000, continuing Example 2 we have
from x; andy- the following inequalities, respectively:

E+i+(1—a)+%year,warranty >1

1

1—a@)+i+(1— N S
(=@ +i+ (1 =)+ 556030000

(60000 —price) > 1
wherea, i, a are binary variables representing propositional teAyist al i anMaker
andAi r Condi ti oni ng.

Looking at the example below, it should be clear the reasoy avtly one numerical
constraint is admitted in a clause.

Example 4.Let us transform the following clause without splittingntthe two corre-
sponding ones

X : I talianMaker v (year warranty > 3) Vv (price < 20000)

the corresponding inequality is then

(60000 —price) > 1

o1 1
14 gyear warranty + 50000 — 20000

The interpretation{year -war ranty = 2, pri ce = 40000} is not a model fory
while the inequality is satisfied.

Notice that the above encoding of the constraints involwetié negotiation process as
well as the definition oMAX -sumM-MBN-P(N') andMAX -PROD-MBN-P (/) are not
depending from how.§ anduS are formalized.

If both ufj andu& are a linear combination of the preference and featuretyutili
functions,i.e., a weigthed sum ofp(n), uy,, ..., uy, Normalized to 1, themAX -sum-
MBN-P(N) remains linear while1AX -PROD-MBN-P(A) is quadratic[17].

®If in the previous step we had not replacedf < k) and—(f > k) with their equivalent
positive forms, then we would have had also to transfeiffi < &) in ﬁf and—(f > k)

in max(Djlc)—p(k) (maX(Df) - f)



5.3 Computational issues

The preceding sections proved that batax -sumM-MBN-P(N) and MAX -PROD-
MBN-P(N) could be solved by general mathematical programming mettramely,
MAX -SUM-MBN-P(N) could be solved by Integer Linear Programming (ILP) [28]
andmMAx -PROD-MBN-P(N) by quadratic programming [17]. Since both methods are
adequate to solve NP-complete Optimization (NPO) Problghsve can conclude
that both problems are contained in NPO.

Theorem 1. Given an instancé/ of either MAX -SUM-MBN-P(N) or MAX -PROD-
MBN-P(N), finding an optimal solution fol/ is a problem inNPO.

Proof. The above Sections 5.1 and 5.2 proved that all constraimsearanslated
into linear inequalities involving variables ranging oether integer or rational num-
bers. In the case afiax -sum-MBN-P(N/), the objective function is linear too, and
the optimization problem is known to belong to the class NR8).[In the case of
MAX -PROD-MBN-P(/N), the objective function is quadratic; but also in this cake,

optimization of a quadratic function over linear consttsis known to be in NPO [17].
O

We recall that when a problem is in NPO, one can ask whethee #dsts an al-
gorithm approximating the optimum within some guaranteednl. In the theory of
Computational Complexity, this question amounts to asktldreone or both prob-
lems are NPO-complete, or instead whether they belong terttaler class APX of
problems that can be approximated within constant bounasinstance, it is known
that MINIMUM VERTEX COVER can be easily approximated within a constant bound
of 2 [1]. The question is not merely theoretical, since iheitproblem admitted some
approximation algorithm, using general mathematical @ogning for solving them
might be an overshoot. However, the theorem below proveshtsais not the case, by
giving an L-reduction [1] oMAX -WEIGHTED-SAT to both problems.

Definition 11. MAX -WEIGHTED-SAT is the followingNP O-complete problem: given
set of atoms4, a propositional formulap € £ 4 and a weight functionv : A — N,
find a truth assignment satisfyiggsuch that the sum of the weights of true variables is
maximum.

It is known thatMAX -WEIGHTED-SAT is NPO-complete [1], hence not approximable
within any constant bound. We now prove NPO-hardness of bieth-sum-MBN-
P(N) andMAX -PROD-MBN-P(N)—that is, we prove that tailored algorithms yield-
ing solutions approximated within a guaranteed bound freendptimum are unlikely
to exist—by reducingnAX -WEIGHTED-SAT to both problems.

Theorem 2. MAX -SUM-MBN-P(N) andMAX -PROD-MBN-P(N') are NPO-complete
problems, even i is in 3CNF and both3 and S are sets of positive literals.

Proof. LetW = (¢, w) be an instance aiAX -WEIGHTED-SAT, with ¢ in 3CNF, and
letA={A,...,A,}.
First, we prove the claim fomax -sum-MBN-P(A). Define an instancé/,



of MAX-SUM-MBN-P(N) as follows. Let7 = ¢, B = & = A. Moreover, let
S =Y w(d;) and letug(A;) = u,(4;) = $w(A4;) fori = 1,...,n. Finally,

letts = t, = 0. Clearly, every solution folV is also a solution fo/,., and for every
modelZ, the value of the objective functian; () (Z) + v, par)(Z) is proportional
with ?factor% to the one fol¥/. Hence, the above is an L-reduction with= %S and

8 =:S.

S?milarly, define an instanc&/,, of MAX -PROD-MBN-P(N) as follows. Let7 =
0, B=A,8 = {Ay} whereA, is anew atom not ipd. Moreover, letS = >~""_, w(4;)
and letug(A;) = sw(A;) fori =1,...,nandu,(4) = 1. Finally, letts = t, = 0.
Also in this case, every solution foV" satisfies als@, and for every model the value
of the objective functionus ) (Z) - ue,pa)(Z) Of M, is proportional tolV’s one.
Hence, also the above reduction is an L-reduction with g = S.

On the other hand, le&f be the smallest integer such that bafi(4;) - S, u, (4;)-S
are integers for every = 1...n. Also in this case, a solution fanAx -sum-MBN-
P(N) andMAX -PROD-MBN-P(N) can be transformed into a solution fdf by mul-
tiplying itby S. O
The proof of the above theorem highlights the fact that ac®aof complexity for both
MAX -SUM-MBN-P(AN) andMAX -PROD-MBN-P(N') comes from the inherent con-
flicts between the preferences of a single agent. In cormiudinear and quadratic
programming are computationally adequate for solwmgx -sum-MBN-P(N) and
MAX -PROD-MBN-P(N).

6 The bargaining process

Summing up, the negotiation process covers the followiagst

Preliminary Phase.The buyer defines strigt and preference8 with correspond-
ing utilitiesug(3;) , as well as the threshotd, and similarly the selles, S, u, () and
t». Here we are not interested in how to compti¢,, and the weight of each prefer-
ence; we assume they are determined in advance by meanbkafdiitect assignment
methods (Ordering, Simple Assessing or Ratio Comparisompaowise comparison
methods (like AHP and Geometric Mean) [31]. Both agentsrimfthe mediator about
these specifications and the ontoldfythey refer to. Notice that for each feature in-
volved in the negotiation process, bothAnand o their respective reservation values
are set either in the fornfi < r or in the formf > ry.

Keeping the example referring to the automotive e-markeml buyer and seller
specify respectively their strict requiremeptando, thresholds s andt,,, preferences
and the worth thereof as in the following:

B =Sedan A (pri ce < 30000) A (kmwar ranty > 120000) A (year warranty > 4)
(1 =GPS_.systemA Al ar nByst em

(B2 =External Col or Bl ack = Leat her seats

B3 = (kmwar ranty > 140000)

up(f1) =0.5
ug(f2) =0.2
up(Bs) =0.3



tg =0.2

o =Sedan A (price > 20000) A (kmwar ranty < 160000) A (year warranty < 6)
o1 =CGPS_system=> (pri ce > 28000)

o2 = (kmwarranty < 150000) vV (year warranty <5)

o3 =Ext ernal Col or Gray

o4 =Navi gat or Pack

us(o1) =0.2
us(o2) =0.4
us(o3) =0.2
ue(os) =0.2
to =0.2

Let 7 be the ontology ifP (), which the participants refer to:
Ext er nal Col or Bl ack = —Ext er nal Col or G ay

T = {Satel l'iteA arm=- Al arnSystem
Navi gat or Pack < Satel | i t eAl ar mA GPS_syst em

Negotiation-Core phase For each3; € B the mediator picks up a new proposi-
tional atomB; and adds the axiom®; < 3; to 7, similarly for S. Then, it transforms
all the constraints modeled ip, o and (just extended] in the corresponding linear
inequalities following the procedures illustrated in $&tt5.2. Given the preference
utility functions us pn) () = Yy biug(B) andug pay(Z) = S0, sjuq(0;),
the mediator adds to this set of constraints the ones inwplelisagreement thresholds
ugpn) = tp anduy pny = to-

With respect to the above set of constraints, the mediatoes@n optimization
problem maximizing the sum (or the product) of global u#ktfor both buyelug(l)
and selleruS (Z). The returned solution to the optimization problem is theeagent
proposed to the buyer and the seller. Notice that this smlus a Pareto optimal one,
furthermore the solution proposed by the mediator is alrasolution, if among all
the Pareto-optimal solutions we take the one maximizingtbduct of utilities of both
the buyer and the seller (see Section 5.2).

With reference to the previous example the mediator praptheefollowing agree-
ment to the players. We omit for the sake of conciseness pitigoal atoms interpreted
asfalse, then the final agreement is:

7 : {Sedan” = true, Ext er nal Col or G ay? = true,
Satel liteAl arnf = true, GPS_syst ent = true,
Navi gat or Pack? = true, Al ar nSyst ent = true,
pri ce? = 28000, kmwar r ant yZ = 160000, year war r ant yZ = 5}

From this point on, it is &ake-it-or-leave-itoffer, as the participants can either
accept or reject the proposed agreement [18].

7 Discussion

In this section we briefly analyze the properties charategithe negotiation mecha-
nism here proposed.



Individual rationality. Individual rationality means that no agent will get a worse
payoff by participating in the mechanism as compared to adigpating,i.e., an agent
does not ever lose by participating. This property is asbhyethe fact that each agent,
among his preferences, expresses a threshold, reprasthidisagreement payoff (see
Section 3). This threshold is one of the constraints of thémapation problem, which
automatically rules out all the agreements that are belaw ttireshold, and that the
agent would have regretted if accepted. In other words nibtpossible to have a final
agreement with a utility for one of the participant lowernhas threshold, so that for
the agent would be better not participating at all.

Efficiency. Our mechanism is efficient, as the mediator computes a saoluthich
is Pareto-efficient (see Section 5.2). Besides, among alptssible Pareto-efficient
solutions, it chooses either the one maximizing the sum efutilities (velfare max-
imizatior), or the one maximizing the product of the utilities, alsakm as thefair
solution or the Nash bargaining solution [ZZ]JAnother definition of efficiency is the
ex-postefficiency, meaning that an agent will not change his stsagsgn after he ob-
served the result of the negotiation. That is he will not debhis preferences after
observing the preferences expressed by the other agentoWet dddress this issue in
this paper as the mediator does not disclose the agentsrprefes to the other party,
at the end of the negotiation the players can see only theopeapfinal agreement.

Budget balance.A mechanism is budget balanced when it does not make either a
profit or loss, meaning that the amount of money collecteddasttibuted from and to
the agents is equal. Our mechanism is budget balanced asdbgapid by the buyer is
exactly the same of the price received by the seller. Théditeigetis not any third party
that can either to subside or exploit the buyer and the §@&r In our framework the
mediator has more the role of a nonbinding arbitrator tharokdy [35]. Even if we do
not exclude that the traders have to pay some fee if the ttdaoeands successfully.

Incentive compatibility. A mechanism is incentive compatible if each participant
can maximize his (expected) utility by reporting his truefprences, given that the
other participants do the same [26§., the truth-telling strategy is the best response
strategy, given that also the other agents report truthf@ur mechanism is not in-
centive compatible, but this is not a surprising result, asefdon and Satterthwaite
[26] proved that in a bilateral trading with incomplete infaation1? it is impossible to
design a Bayes-Nash incentive-compatible mechanismdtsimiultaneously efficient,
budget balanced and individually rational. Therefore ibmy possible to design an
incentive-compatible mechanism that achieves any twoesdhhree properties. They
proved the general impossibility to have such a mechanisitmowi outside subsidies,
i.e., without relaxing the budget balanced property.

Furthermore we point out that in our mechanism the abseno&ehtive compat-
ibility only affect the revelation of the reservation valoa numerical features.g,
price, warranty, etc. Indeed an agent cannot manipulatenichanism expressing a

% Observe that there can be many fair-Pareto-efficient solutions, ltaresolutions. Neverthe-
less, as they are perfectly equivalent, the mediator will simply randormdgsshone of them
and propose that to the participants.

10 with the term “incomplete information” we indicate that each agent ignorés fireferences
and the worth thereof of the opponent.



bigger, or smaller, number of preferences, as agent’syuislinormalized to 1, in order
to both rule out such a possibility and make utilities expegsby traders comparable
(see Def. 6 in Section 3). Besides, even if an agent exprestadse preference this
fact could only lower its utility as, normalizing utilitie® 1, the value of the “true”
preferences will be lowered.

Moreover the threshold is only used to check if an agreensnbe accepted or not
by the agents. Therefore if agents express a bigger digagreae¢hreshold they can only
rule out some agreements which instead were acceptableislway they would end
up with a disagreement payoff while they could have reachsatiafactory agreement
by acting truthfully. Similarly if they express a smallerd¢shold they would only add
the possibility to end up with an agreement which is not Reedficient (w.r.t. their true
evaluation).

Besides, there is no incentive for agents to lie on preferemcich do not involve
numerical features, because they could only end up with ditfarent from their true
expectationse.g, a car with a diesel engine instead that a gas one. For whataon
numerical features the argument is analogous to the one dfitbsholds. Let's take the
price example. If the buyer reveals a value lower than her tegervation value, while
the seller reveals one higher than his true value, then theriswalue might be lower
than the seller’s one, when, in fact, their true value weragatible. Hence, also in this
case the player could end up with a disagreement payoff, wkerg truthfully they
could reach a better payoff. Therefore even if the mechaisisot incentive compatible
w.r.t. the numerical features the agents are motivatedtto atruthful way, because of
the risk to end up with a disagreement payoff when insteadtar{efficient) agreement
exists.

8 Related Work and conlusion

Automated bilateral negotiation has been widely investidaboth in artificial intelli-
gence and in microeconomics research communities, soehi®s is necessarily far
from complete. Attempting a coarse subdivision, we may tiwg in classic game the-
ory, the bargaining problem has been modeled eitheoaperativeor non-cooperative
games [16]. In the first approach, the aim is finding a solugimen a set of possible
outcomes, so given a set of axioms and a coalition, one di&tesrhow to split the sur-
plus among the participants. Instead, in non-cooperativess there are a well-defined
set of rules and strategies. In such games it is possiblditzedEnequilibriumstrategy,
which ensures the rational outcomes of a game: no played dmariefit by unilaterally
deviating from her strategy, given that the other playeltsviotheir own strategies [21].
Al-oriented research has usually focused on automatedtiatign among agents
and on designing high-level protocols for agent interac{]. Agents can play dif-
ferent roles: act on behalf of a buyer or seller, but also ph&yrole of a mediator or
facilitator. Depending on the presence of a mediator we ¢stinduish betweeren-
tralized and distributedapproaches. In the former, agents elicit their prefereaces
then a mediator, or some central entity, selects the masttdeideal based on them. In
the latter, agents negotiate through various negotiatiepssreaching the final deal by
means of intermediate deals, without any external helpQ&tributed approaches do



not allow the presence of a mediator because—as stated by K@up.25]—agents
cannot agree on any entity, so they do not want to disclogepheferences to a third
party, that, missing any relevant information, could ndphegents. In dynamic sys-
tems a predefined conflict resolution cannot be allowed, s@tbsence of a mediator
is discouraged. On the other hand the presence of a medmtobe extremely use-
ful in designing negotiation mechanisms and in practicgdnant commerce settings.
According to MacKie-Mason and Wellman [24], negotiationamanisms often involve
the presence of a mediatbh, which collects information from bargainers and exploits
them in order to propose an efficient negotiation outcomes filesence of a trusted
third party can help parties to reach a Pareto-efficienteagemt. As pointed out by
Raiffa et al. [35, p.311], usually bargainers may not wardiszlose their preferences
or utilities to the other party, yet they can be more willimgréveal these information
to a trusted—automated—mediator, helping negotiatinggmitti achieve efficient and
equitable outcomes. The presence of a mediator and thehmgsotocol is an in-
centive for the two parties to reveal the true preferencesabse they can trust in the
mediator and they have a single possibility to reach theasmest with that counterpart.

Several approaches adopt a mediator [12, 19, 15]. In ther ppgeatima et al. [12]
an extended alternating-offers protocol is presented) thi¢ presence of a mediator,
which improves the utility of both agents. No inter-depamdssues are taken into ac-
count. Klein et al. [19] propose a mediated-negotiatiorrapph for complex contracts,
where inter-dependency among issues is investigated. Jieement is a vector of is-
sues, having value 0 or 1 depending on the presence or abstacgiven contract
clauses. Only binary dependencies between issues aredeogtsi the agent’s utility
is computed through an influence matrix, where each cellessmts the utility of a
given pair of issues. However in this approach no semaniitioas among issues are
investigated.

A large number of negotiation mechanisms have been propasddstudied in
the literature; it is possible to distinguish, among otlgame-theoretic ones [20, 36],
heuristic-based approaches [12, 10] and logic-based apipes. Although game-theoretic
and heuristic-based approaches are highly suitable foda minge of applications, they
have some limitations and disadvantages. Often in ganwrdtie approaches it is as-
sumed that agents have a complete knowledge about the sppossible outcomes,
as well as unbounded computational resources [34]. On tiex band, heuristic-based
approaches use empirical evaluations in order to find areagget, which can be sub-
optimal, as they do not explore the entire space of possiltiesomes. With respect to
our approach, the main drawback is that, usually, the issuesgotiate on are fixed in
advance and are known by both agents, as in multi-dimensaumtions [30]. Hence
agents are not allowed to exchange any additional infoonaluring the negotiation
process [34].

1 The most well known —and running— example of mediator is eBay siteravenediator
receives and validates bids, as well as presenting the current hiithasid finally determining
the auction winner [24]. Observe also that eBay retains private infiwmef traders, such as
selling reservation value.



In the following we give a brief overview of logic-based apaches to automated
negotiation, comparing our approach with existing onesfkagtlighting relevant dif-
ferences.

8.1 Logic-based approaches

There is a huge amount of literature focused on argumenta@sed negotiation [34,
29,11, 3].In these approaches an agent can accept/rejipife a proposal of its op-
ponent, so agents can argue about their beliefs, givendesires and so pursue their
intentions [29]. With respect to our framework, these apphes require a richer com-
munication languagee(g, modal logic) in order to exchange information and a specific
negotiation protocol to constrain the use of the languagedléMre use a one-shot pro-
tocol with the presence of a mediator, which ensures theitation after only one
round, in argumentation-based frameworks, usually, ageatactions go back and
forth for multiple rounds, without the intervention of arthiparty. Moreover agents
have to be able not only to evaluate opponent proposals ailpjesagreements, but
also generate a critique or a counter-proposal, given tiperggnt's one. With refer-
ences to BDI approaches proposed by Parsons et al.[j28]resandIntentionsmatch

in our framework with Preferences, aBgliefsare implicit in each agent: the agent
enters the e-marketplace because he believes there witidibex agent having what
he is searching for.

Several recent logic-based approaches to negotiation asedbon propositional
logic. Bouveret et al. [6] use Weighted Propositional FoiasWPF) to express agents
preferences in the allocation of indivisible goods, but noonmon knowledge (as our
ontology) is present. The use of an ontology alleevg, to catch inconsistencies be-
tween demand and supply or find out if an agent preferencegbedchby a preference
of its opponent, which is fundamental to model an e-marketl Chevaleyre et al.
[7] classify utility functions expressed through WPF acdogdo the properties of the
utility function (sub/super-additive, monotone, etc.e Wsed the most expressive func-
tions according to that classification, namely, weightsr augrestricted propositional
formulas.

Zhang and Zhang [42] adopt a kind of propositional knowletigee arbitration
to choose a fair negotiation outcome. Howevammon knowledgis considered as
just more entrenched preferences, that could be even ditdpmome deals. Instead,
the logical constraints in our ontolody mustalwaysbe enforced in the negotiation
outcomes. Finally we devisedmotocolwhich the agents should adhere to while nego-
tiating; in contrast, Zhang and Zhang [42] adopt a gamer#t@oapproach, presenting
no protocol at all, since communication between agentstisamsidered.

We borrow from Wooldridge and Parsons [40] the definition gfement as a
model for a set of formulas from both agents. However, Wadige and Parsons [40]
only study multiple-rounds protocols and the approachdsdtie burden to reach an
agreement to the agents themselves, although they cawfalfwotocol. The approach
does not take preferences into account, so that it is notljess guarantee the reached
agreement is Pareto-efficient. Our approach, instead, @igising anautomatedsup-
port to negotiating agents to reach, in one shot, Paret@agrets. The work presented



here builds on the work by Ragone et al. [33], where a basipgsitional logic frame-
work endowed of a logical theory was proposed. AfterwarddRaget al. [32] extend
the approach also discussing complexity issues. In thismpap further extended the
framework, introducing the extended logR(/\), thus handling numerical features,
and showed we are able to compute Pareto-efficient agrespisnsolving an opti-
mization problem and adopting a one-shot negotiation pmto

8.2 Constraint Satisfaction Problems (CSP)

Our framework shares some similarities with approachesgeéltoDistributed CSPs
andSoftCSPs. For what concerns the former, while in Distributed €&mstraints are
distributed among agents and each agent controls its ovafigatiables [41], in our ap-
proach variables (issues) do not belong to any agent ane ihamediator, who rather
than simply finding a legal assignment (an assignment tabbes that does not violate
any constraints), computes assignments which are Paffetierts. A further extension
of CSPs considering also preferences among solutionsi€S#fs: preferences are ex-
pressed as soft constraints and a solution has to satidfgraliconstraints and as much
as possible of soft constraints (preferences) [4]. Depgndn the approach, the most
important onesHierarchical CSP[39]) can be satisfied, or the number of violated con-
straints Partial CSP[13]) can be minimized or some satisfaction lesehfiring-based
CSP[4]) can be maximized. Our approach is more similar tosémiring-based one,
however in such an approach only a partial order betweemgnmates can be modeled
and no conditional preference can be expressed, even if atierapts have been done
by Domshlak et al. [9] to mix hard and soft constraints with-&#®s [5], which ex-
press qualitative preferences (like conditional onesy twevalues of a single property
of the outcomes. Moreover, in this approach the translatforonditional preference
statements into soft constraints requires some approkingain order to improve the
computational efficiency of reasoning about this statement

8.3 Conclusion

We are aware that there is no universal approach to autoregtaiation fitting every
scenario, but rather several frameworks suitable for diffe scenarios, depending on
the assumptions made about the domains and agents invaltkd interaction. Here,
we have proposed a logic-based framework to automate meslie bilateral negotia-
tion in P2P e-marketplaces, where agents communicate tteniggic?(N), able to
handle both numerical features and non numerical ones. kgdssues in &P (\N)
ontology it is possible to catch inconsistency betweengoegfces and then reach con-
sistent agreements, as well as to discover implicit rafat{guch as implication) among
preferences, which do notimmediately appear at the syatagel. The logic has been
mixed to utility theory in order to model preferences botlalifative and quantitative.
Exploiting a mediator it is possible to overcome the probl#hmcomplete informa-
tion about opponent’s preferences. We adopted a one-sbikoicot, using a mediator to
solve an optimization problem that ensures the Paretaeffiy of the outcomes. We
have also investigated the complexity of the problem of figdPareto-efficient solu-
tion, proving thatmax -sumM-MBN-P(N) is a NPO-complete problem.



In the near future we plan to extend the approach using mqueessive logics,
namely, Description Logics, to increase the expressivenésupply/demand descrip-
tions. We are also investigating other negotiation pramasithout the presence of a
mediator, allowing to reach an agreement in a reasonablei@nod communication
rounds. The use of aggregate operators to be used in ordeptess both strict re-
quirements and preferences is also under investigation.
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