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Abstract. We present a novel logic-based framework to automate multi-issue bi-
lateral negotiation in e-commerce settings. The approach exploits logic as com-
munication language among agents, and optimization techniques in order to find
Pareto-efficient agreements. We introduceP(N ), a propositional logic extended
with concrete domains, which allows one to model relations among issues (both
numerical and non-numerical ones) via logical entailment, differently from well-
known approaches that describe issues as uncorrelated. ThroughP(N ) it is pos-
sible to represent buyer’s request, seller’s supply and their respective preferences
as formulas endowed with a formal semantics,e.g., “ if I spend more than 30000
e for a sedan then I want more than a two-years warranty and a GPS system
included”. We mix logic and utility theory in order to express preferences in a
qualitative and quantitative way.
We illustrate the theoretical framework, the logical language, the one-shot ne-
gotiation protocol we adopt, and show we are able to compute Pareto-efficient
outcomes, using a mediator to solve an optimization problem. We prove the com-
putational adequacy of our method by studying the complexity of the problem of
finding Pareto-efficient solutions in our setting.

1 Introduction

Negotiation crosses the boundaries of several disciplines, including economics, com-
puter science, decision support theory, organizational theory. A number of definitions
have been proposed in the literature referring to negotiation, none of them completely
exhaustive or covering the boundless negotiation arena in the various domains. We refer
here to the one by Parsons et al. [29], that defines negotiation as “the process by which
a group of agents communicate with one other to try and come toa mutually acceptable
agreement on some matter.” Bilateral negotiation finds applications in different scenar-
ios, each one with its own peculiarities and issues. Among others,resource and task al-
locationproblems (e.g., scheduling, logistics, bandwith usage),online auctions(eBay
probably being the most renowned example),e-marketplaces. In this paper we obvi-
ously do not claim to propose a negotiation mechanism suitable for all the above cited
scenarios, as each scenario has its own key dimensions, moreor less crucial, depending
on the scenario itself: a mechanism having some good characteristics for some domain,
can be, indeed, completely unsuitable for another one. We focus on mechanisms to



automate negotiation in peer-to-peer (P2P) e-marketplaces [38], where products (cars,
houses, Personal Computers, etc.) or services (travel booking, wedding service, etc.)
can be, at the same time, provided by suppliers or searched bypotential customers.
In the rest of the paper we refer, by way of example, without loss of generality, to an
automotive e-marketplace.

In the framework we study, the negotiation problem can be characterized by the
following key dimensions:

– Multiple issues.Differently from e-marketplaces dealing with undifferentiated prod-
ucts (commodities as oil, concrete, etc.) or stocks, where only price, time or quantity
have to be taken into account, in a P2P e-marketplace also other features have to be
considered during the negotiation process. As a matter of fact, when a potential buyer
browses an e-marketplace, she may look for a good (e.g., a car) fulfilling her needs
and/or wishes, so that not only the price is relevant, but also other features, such as
e.g., warranty or delivery time, as well as look, model, comfort,and so on. Usually,
issues are described as uncorrelated terms, without considering any underlying se-
mantics. Moreover, issues may not be established in advance(before the negotiation
starts) as it is usually assumed in many problems of resourceand task allocation (see
Section 8 for an extensive discussion). In our approach, we model amulti-issue bilat-
eral negotiationproblem where issues can be in some way interrelated (e.g., “I would
like a station wagon endowed with shadow rear windows if its color is black”).

– Language.Agents need to communicate with each other in order to express not only
what they are searching for/offering, but also to express preferences on issues or bun-
dles thereof. A language has to be defined to express product/service descriptions, as
well as preferences on issues characterizing the product/service itself,e.g., the buyer
can state: (1)“I can spend up to 25000e for a passenger car only if there is a nav-
igator pack included”; while the seller can provide (2) a“Sedan with a price not
less than 23000 with a GPS system included”. How can we determine if there is a
negotiation space between them? In order to handle preferences involving numerical
features and non-numerical ones, we define (Section 2), the logicP(N ) as commu-
nication language, a Propositional Logic endowed with Concrete Domains . So the
above preferences can be expressed as (1)PassengerCar∧(price ≤ 25000) ⇒
NavigatorPack and (2)Sedan∧ (price ≥ 23000)∧GPS system, where re-
lations among issues are made explicit in alogical Theory ( i.e., anontology), where
we can express that aSedan is a type of Passenger car(Sedan ⇒ PassengerCar)
or that aSuv is not a Sedan(SUV ⇒ ¬Sedan) or still, find the meaning ofNavigator
pack(NavigatorPack ⇔ SatelliteAlarm ∧ GPS system).

– Utilities. Once agents have expressed their own preferences, it is important to com-
pare them, weighting each agent’s preferences. This can be done ranking preferences
in an ordinal or cardinal way. Furthermore we are interestednot only in local pref-
erences(over logical formulas), but also inglobal preferences(over entire agree-
ments). Hence, we compare and evaluate different kinds of agreement to find the
most suitable agreements for both agents. To this end we define a utility function
taking into account how much preferences are satisfied in thefinal agreement, their
relative relevance and how much (for numerical features) each preference is satisfied,
see Sections 3 and 4.



– Information. Another important dimension of the negotiation problem is:what I
knowabout my opponent. An agent can know everything (preferencesandworth of
them), as well as only preferences (but not their worth) or nothing about its opponent.
The less he knows the more it is difficult to model a negotiation mechanism (Kraus
[20] made an extensive discussion on this point). We adopt acentralized approach3

where agents reveal their preferences and worth of them onlyto a trusted mediator. As
pointed out by Raiffa et al. [35, p.311], usually, bargainers may not want to disclose
their preferences or utilities to the other party, but they can be more willing to reveal
this information to a trusted—automated—mediator, helping negotiating parties to
achieve efficient and equitable outcomes.

– Agreement.Usually, the main target of an agent is to reach a satisfiable agreement
in a reasonable amount of communication rounds. Furthermore, knowing if such an
agreement is alsoPareto-efficientis a matter that can not be left out. Aprotocol
andstrategieshave to be defined in order to ensure that the reached agreement is
Pareto-efficient. Besides, it is fundamental to assesshow hard it is to find Pareto-
efficient agreements and check whether a given agreement is Pareto-efficient. In our
framework, we propose aone-shotprotocol with the intervention of amediatorwith
a proactive behavior: it collects agent’s preferences and proposes to each participant
a fair Pareto-efficient agreement (see Section 5.2). For what concerns strategy, the
players reveal their preferences to the mediator and then, once it has computed a
solution, they can accept or refuse the agreement proposed to them; they refuse if
they think possible to reach a better agreement looking for another partner, or for a
different set of bidding rules. Notice that here we do not consider the influence of the
outside optionsin the negotiation strategy [25].

– Mediator. As hinted above, we adopt a centralized approach with a mediator act-
ing as a nonbinding arbitrator [35]. Although we admit approaches to negotiation
involving a mediation entity are often controversial (Section 8), we stress here its im-
portance in our p2p e-marketplace framework. Its roles are as follows: it collects and
stores advertisements (requests and offers), it allows agents to keep preferences and
their worth as private information, it solves the optimization problem (Section 5),
which allows to determine fair Pareto-efficient agreements, and finally notifies the
bidders, paving the way to the actual transaction. Furthermore, the actual deploy-
ment of our approach in a real-world system can be made economically feasible if
the mediator charges a fee for each successful transaction,i.e., for each proposed
agreement accepted by both parties.

Observe that in our framework it is possible to modelpositiveandnegativeprefer-
ences (“I would like a car either black or gray, but not red”), as well asconditional
preferences(“I would like leather seats if the car is black”) involving both numerical
features and non-numerical ones (“If you want a car with GPS system you have to wait
at least one month”) or only numerical ones (“I accept to pay more than 25000e only
if there is more than a two-years warranty”).

3 We refer to Section 8 for a thorough discussion on centralized/distributed approaches.



Besides we modelquantitativepreferences; thanks to the weight assigned to each
preference it is possible to determine a relative importance among them, rather than
only a total order between them4.

Summarizing, the main contributions of this paper include:a framework to auto-
mate multi-issue bilateral negotiation; the logical languageP(N ), able to handle both
numerical features and non-numerical ones, as well as to represent existing relations
between issues and preferences as formulas. The rationale for this proposal is somehow
obvious: using an ontologyT it is possible to catch an inconsistency among prefer-
ences (agents cannot agree on A and B at the same time if inT A is defined as disjoint
from B). On the other hand, the use of a formal ontology allowsone to discover that an
agent preference is satisfied (implied) by a preference of its opponent, even if this is not
explicitly modeled at the syntactical level. For instance,if I am searching for a Passen-
ger car and my opponent offers a Sedan, my preference is surely satisfied by the offer
because of the axioms in the ontology (Sedan ⇒ PassengerCar). Knowledge rep-
resentation techniques are hence mixed up with utility theory in order to express pref-
erences both in a qualitative and quantitative way. We then propose a one-shot protocol
with the intervention of a mediator able to compute Pareto-efficient agreements solving
an optimization problem.

We also prove the computational adequacy of our method by studying the complex-
ity of the problem of finding Pareto-efficient solutions.

2 Representation of issues

We divide issues involved in a negotiation in two categories. Some issues may express
properties that aretrue or false, like, e.g., in an automotive domain,ItalianMaker,
or AlarmSystem. We represent them as propositional atomsA1, A2, . . . from a finite
setA. Other issues involve numerical features likedeliverytime, orprice repre-
sented as variablesf1, f2, . . ., each one with its specific domainDf1

,Df2
, . . ., such as

[0, 90] (days) fordeliverytime, or [1000, 30000] (euros), forprice. The variables
representing numerical features are always constrained bycomparing them to some
constant, likeprice < 20000, or deliverytime ≥ 30, and such constraints can
be combined into complex propositional requirements—also involving propositional
issues—e.g., ItalianMaker∧ (price ≤ 25000)∧ (deliverytime < 30) (rep-
resenting a car made in Italy, costing no more than 25000 euros, delivered in less than
30 days), orAlarmSystem ⇒ (deliverytime > 30) (expressing the seller’s re-
quirement“if you want an alarm system mounted you’ll have to wait more than one
month”). We now give precise definitions for the above intuitions, borrowing from a
previous formalization of so-calledconcrete domains[2] from Knowledge Representa-
tion languages.

Definition 1 (Concrete Domains, [2]).A concrete domainD consists of a finite set
∆c(D) of numerical values, and a set of predicatesC(D) expressing numerical con-
straints onD.

4 Notice that the whole approach holds also if the user does not specify a weight for each pref-
erence, but only a global order on preferences. However, in that case, the relative importance
among preferences is missed.



For our numerical features, predicates are always the binary operatorsC(D) = {≥,≤
, >,<,=, 6=}, whose second argument is a constant in∆c(D)5. We note that in some
scenarios other concrete domains could be possible,e.g., colors as RGB vectors in an
agricultural market, when looking for or selling fruits.

Once we have defined a concrete domain and constraints, we canformally extend
propositional logic in order to handle numerical features.We call this languageP(N ).

Definition 2 (The languageP(N )). Let A be a set of propositional atoms, andF a
set of pairs〈f,Df 〉 each made of a feature name and an associated concrete domain
Df , and letk be a value inDf . Then the following formulas are inP(N ):

1. every atomA ∈ A is a formula inP(N )
2. if 〈f,Df 〉 ∈ F , k ∈ Df , andc ∈ {≥,≤, >,<,=, 6=} then(fck) is a formula in

P(N )
3. if ψ andϕ are formulas inP(N ) then¬ψ, ψ ∧ ϕ are formulas inP(N ). We also

useψ ∨ ϕ as an abbreviation for¬(¬ψ ∧ ¬ϕ), ψ ⇒ ϕ as an abbreviation for
¬ψ ∨ ϕ, andψ ⇔ ϕ as an abbreviation for(ψ ⇒ ϕ) ∧ (ϕ⇒ ψ).

We callLA,F the set of formulas inP(N ) built usingA andF .

In order to define a formal semantics ofP(N ) formulas, we consider interpretation
functionsI that map propositional atoms into{true, false}, feature names into values
in their domain, and assign propositional values to numerical constraints and composite
formulas according to the intended semantics.

Definition 3 (Interpretation and models).An interpretationI for P(N ) is a function
(denoted as a superscript·I on its argument) that maps each atom inA into a truth
valueAI ∈ {true, false}, each feature namef into a valuefI ∈ Df , and assigns truth
values to formulas as follows:

– (fck)I = true iff fIck is true inDf , (fck)I = false otherwise
– (¬ψ)I = true iff ψI = false, (ψ ∧ ϕ)I = true iff bothψI = true andϕI = true,

according to truth tables for propositional connectives.

Given a formulaϕ in P(N ), we denote withI |= ϕ the fact thatI assignstrue toϕ. If
I |= ϕ we sayI is a modelfor ϕ, andI is a model for a set of formulas when it is a
model for each formula.

Clearly, an interpretationI is completely defined by the values it assigns to proposi-
tional atoms and numerical features. LetA = {Sedan,GPL} be a set of propositional
atoms,Dprice = {0, . . . , 60000} andDyear warranty = {0, 1, . . . , 5} be two
concrete domains for the featuresprice, year warranty, respectively. A modelI
for both formulas:

{

Sedan ∧ (GPL ⇒ (year warranty ≥ 1)),
(price ≤ 5000)

}

5 So, strictly speaking,C(D) would be a set of unary predicates with an infix notation,e.g.,
x > 5 is in fact a predicateP>5(x) which istrue for all values ofDx greater than 5 and
false otherwise; however, this distinction is not necessary in our formalization.



is SedanI = true, GPLI = false, year warrantyI = 0, priceI = 4500. Given
a set of formulasT in P(N ) (representing an ontology), we denote byI |= T the
fact thatI is a modelfor T . An ontology issatisfiableif it has a model.T logically
implies a formulaϕ, denoted byT |= ϕ iff ϕ is true in all models ofT . We denote
by MT = {I1, . . . ,In}, the set of all models forT , and omit the subscript when no
confusion arises.

The following remarks are in order for the concrete domains of our e-marketplace-
oriented scenarios:

1. domains arediscrete, with auniformdiscretization stepǫ. For example, if the seller
states he cannot deliver a car before one month, he is saying that the delivery time
will be at least in one month and one day(deliverytime ≥ 32), whereǫ = 1
(in days).

2. domains arefinite; we denote withmax(Df ) andmin(Df ) the maximum and min-
imum values of each domainDf .

3. even for the same feature name, concrete domains aremarketplace dependent. For ,
let us considerprice in two different marketplace scenarios: pizzas and cars. For
the former one, the discretization stepǫ is thee-cent: the price is usually something
like 4.50 or 6.00e. On the other hand, specifying the price of a car we usually have
10500 or 15000e; then the discretization step in this case can be fixed as 100e.

The above Point 1 and the propositional composition of numerical constraints imply
that the operators{≥,≤, >,<,=, 6=} can be reduced to{≥,≤}.

Definition 4 (successor/predecessor).Given two contiguous elementski andki+1 in
a concrete domainDf we denote by:

– s : Df → Df the successor function:s(ki) = ki+1 = ki + ǫ

– p : Df → Df the predecessor function:p(ki+1) = ki = ki+1 − ǫ

Clearly, max(Df ) has no successor andmin(Df ) has no predecessor. Based on the
above introduced notions, we can reduceCm(Df ) to {≤,≥} using the following trans-
formations:

f = k −→ (f ≤ k) ∧ (f ≥ k) (1)

f 6= k −→ (f < k) ∨ (f > k) (2)

f > k −→ f ≥ (k + ǫ) −→ f ≥ s(k) (3)

f < k −→ f ≤ (k − ǫ) −→ f ≤ p(k) (4)

3 Multi-issue Bilateral Negotiation in P(N )

According to Ragone et al. [32], we use logic formulas inP(N ) to model the buyer’s
demand and the seller’s supply. Relations among issues, both propositional and numer-
ical, are represented by a setT –for Theory (i.e., ontology)—ofP(N ) formulas.

In a typical bilateral negotiation scenario, statements within both the buyer’s re-
quest and the seller’s offer can be split intostrict requirementsandpreferences. Strict
requirements represent what the buyer and the seller want tobe necessarily satisfied



in order to accept the final agreement—in our framework we callstrict requirements
demand/supply. Preferencesare statements involving issues they are willing to nego-
tiate on: preferences may not be satisfied in the final agreement; obviously, the more
preferences are fulfilled in the final agreement, the more an agent will be satisfied.

Example 1 Suppose to have a buyer’s request like “I would like a sedan with leather
seats. Preferably I would like to pay less than 12000e furthermore I’m willing to pay
up to 15000e if warranty is greater or equal than 3 years. I don’t want to pay more
than 17000e and I don’t want a car with a warranty less than 2 years”. In this example
we identify:
demand: I want a sedan with leather seats. I don’t want to pay more than 17000e. I
don’t want a car with a warranty less than 2 years
preferences: Preferably I would like to pay less than 12000 , furthermoreI’m willing to
pay up to 15000e if warranty is greater or equal than 3 years.

Definition 5 (Demand, Supply, Agreement).Given an ontologyT represented as a
set of formulas inP(N ) representing the knowledge on a marketplace domain

– a buyer’sdemandis a formulaβ (for Buyer) inP(N ) such thatT ∪ {β} is satisfi-
able.

– a seller’ssupplyis a formulaσ (for Seller) inP(N ) such thatT ∪{σ} is satisfiable.
– I is a possible dealbetweenβ andσ iff I |= T ∪ {σ, β}, that is,I is a model for

T , σ, andβ. We also callI anagreement.

The seller and the buyer model inσ andβ the minimal requirements they accept for
the negotiation. If seller and buyer have set strict attributes that are in conflict with each
other, that isMT ∪{σ,β} = ∅, the negotiation ends immediately because it is impossible
to reach an agreement. If the participants are willing to avoid theconflict deal[36], and
continue the negotiation, it will be necessary they revise their strict requirements.

In the negotiation process both the buyer and the seller express some preferences
on attributes, or their combination. The utility function is usually defined based on
these preferences. We start defining buyer’s and seller’s preferences and their associated
utilities: uβ for the buyer, anduσ for the seller.

Definition 6 (Preferences).The buyer’snegotiation preferencesB
.
= {β1, . . . ,βk} are

a set of formulas inP(N ), each of them representing the subject of a buyer’s prefer-
ence, and a utility functionuβ : B → Q+ assigning a utility to each formula, such that
∑

i uβ(βi) = 1.
Analogously, the seller’snegotiation preferencesS

.
= {σ1, . . . ,σh} are a set of formu-

las inP(N ), each of them representing the subject of a seller’s preference, and a utility
functionuσ : S → Q+ assigning a utility to each formula, such that

∑

j uσ(σj) = 1.

Buyer’s request in Example 1 is then formalized as:

β = Sedan ∧ Leather seats ∧ (price ≤ 17000) ∧

(year warranty ≥ 2)

β1 = (price ≤ 12000)

β2 = (year warranty ≥ 3) ∧ (price ≤ 15000)



Both agents’ utilities are normalized to 1 to eliminate outliers, and make them compa-
rable. Since we assumed that utilities are additive, thepreference utilityis just a sum of
the utilities of preferences satisfied in the agreement.

Definition 7 (Preference Utilities).LetB andS be respectively the buyer’s and seller’s
preferences, andMT ∪{σ,β} be their agreements set. Thepreference utilityof an agree-
mentI ∈ MT ∪{σ,β} for a buyer and a seller, respectively, are defined as:

uβ,P(N )(I)
.
= Σ{uβ(βi) | I |= βi}

uσ,P(N )(I)
.
= Σ{uσ(σj) | I |= σj}

whereΣ{. . .} stands for the sum of all elements in the set.

Notice that if one agente.g., the buyer, does not specify soft preferences, but only strict
requirements, this is modeled asβ1 = true anduβ,P(N )(I) = 1, which reflects the fact
that an agent accepts whatever agreement not in conflict withits strict requirements.
From the formulas related to Example 1, we note that while considering numerical
features, it is still possible to express strict requirements and preferences on them. Ex-
pressing a strict requirement on numerical features is equivalent to setting areservation
value [35] on them. In Example 1 the buyer expresses two reservation values, one on
price“more than 17000e” and the other on warranty“less than 2 years”.

Both buyer and seller have their own reservation values on each feature involved in
the negotiation process. It is the maximum (or minimum) value in the range of possi-
ble feature values to reach an agreement,e.g., the maximum price the buyer wants to
pay for a car or the minimum warranty required, as well as, from the seller’s perspec-
tive the minimum price he will accept to sell the car or the minimum delivery time.
Usually, each participant knows its own reservation value and ignores the opponent’s
one. Referring to price and the two corresponding reservation valuesr

β,price and
r
σ,price for the buyer and the seller respectively, if the buyer expressesprice ≤
r
β,price and the sellerprice ≥ r

σ,price, in caser
σ,price ≤ r

β,price we
have[r

σ,price, rβ,price] as aZoneOf PossibleAgreement —ZOPA(price),
otherwise no agreement is possible [35]. More formally, given an agreementI and a
featuref , fI ∈ ZOPA(f) must hold.

Keeping the price example, let us suppose that the maximum price the buyer is
willing to pay is 15000, while the seller minimum allowable price is 10000, then we
can set the two reservation values:r

β,price = 15000 andr
σ,price = 10000, so the

agreement pricewill be in the intervalZOPA(price) = [10000, 15000].
Obviously, the reservation value is considered as private information and will not

be revealed to the other party, but will be taken into accountby the mediator when the
agreement will be computed. Since setting a reservation value on a numerical feature
is equivalent to set a strict requirement, then, once the buyer and the seller express
their strict requirements, reservation values constraints have to be added to them (see
Example 1).

In order to formally define a Multi-issue Bilateral Negotiation problem inP(N ),
the only other elements we still need to introduce are thedisagreement thresholds, also
called disagreement payoffs,tβ , tσ. They are the minimum utility that each agent re-
quires to pursue a deal. Minimum utilities may incorporate an agent’s attitude toward



concluding the transaction, but also overhead costs involved in the transaction itself,
e.g., fixed taxes.

Definition 8 (MBN-P(N )). Given aP(N ) set of axiomsT , a demandβ and a set
of buyer’s preferencesB with utility functionuβ,P(N ) and a disagreement threshold
tβ , a supplyσ and a set of seller’s preferencesS with utility functionuσ,P(N ) and
a disagreement thresholdtσ, a Multi-issueBilateral Negotiation problem (MBN) is
finding a modelI (agreement) such that all the following conditions hold:

I |= T ∪ {σ, β} (5)

uβ,P(N )(I) ≥ tβ (6)

uσ,P(N )(I) ≥ tσ (7)

Observe that not every agreementI is a solution of an MBN, if eitheruσ,P(N )(I) < tσ
or uβ,P(N )(I) < tβ . Such an agreement represents a deal which, although satisfying
strict requirements, is not worth the transaction effort. Also notice that, since reservation
values on numerical features are modeled inβ andσ as strict requirements, for each
featuref , the conditionfI ∈ ZOPA(f) always holds by condition (5).

4 Utilities for Numerical Features

Buyer’s/seller’s preferences are used to evaluate how goodis a possible agreement and
to select the best one. Obviously, also preferences on numerical features have to be
considered, in order to evaluate agreements and how good an agreement is w.r.t. an-
other one. Let us explain the idea considering the demand andbuyer’s preferences in
Example 1.

Example 1.Referring toβ, β1 andβ2 in Example 1 let us suppose the following offer
6:

σ = Sedan ∧ (price ≥ 15000) ∧ (year warranty ≤ 5)

Three possible agreements between the buyer and the seller are, among others:

I1 : {SedanI1 = true,Leather seatsI1 = true,

priceI1 = 17000,year warrantyI1 = 3}

I2 : {SedanI2 = true,Leather seatsI2 = true,

priceI2 = 16000,year warrantyI2 = 4}

I3 : {SedanI3 = true,Leather seatsI3 = true,

priceI3 = 15000,year warrantyI3 = 5}

With respect to the above set of agreements, we can say thatI1 is the most convenient
from the seller’s point of view (and the most disadvantageous for the buyer) whilstI3

represents the worst agreement from the seller’s perspective (and the best one for the
buyer). In fact, if the agreement wasI1 then the seller would get 17000e providing a

6 For illustrative purpose, in this example we consider an offer where onlystrict requirements are
explicitly stated. Of course, in the most general case also the seller can express his preferences.



warranty of just 3 years rather than getting 15000e selling a car with 5 years warranty
in case the agreement wasI3. In the above set of agreements,I2 seems to be the best
compromise between buyer and seller.

The above example highlights the need for utility functionstaking into account the
value of each numerical feature involved in the negotiationprocess. Of course, for each
feature two utility functions are needed; one for the buyer —uβ,f , the other for the
seller —uσ,f . These functions have to satisfy at least the basic properties enumerated
below. For the sake of conciseness, we writeuf when the same property holds both for
uβ,f anduσ,f . :

1. uf is normalized to[0, 1] to make agents’ preferences comparable and to avoid
that agents could manipulate their preference revelation in order to get a better deal
stating a bigger (or smaller) number of preferences. Given the pair〈f,Df 〉, it must
be defined over the domainDf .

2. From Example 1 we note the buyer is more satisfied as the price decreases whilst the
seller is less satisfied. Hence,uf has to be monotonic and wheneveruβ,f increases
thenuσ,f decreases and vice versa.

3. There is no utility for the buyer if the agreed value on price is greater or equal
than its reservation valuer

β,price =17000 and there is no utility for the seller if
the price is less than or equal tor

σ,price =15000. Since concrete domains are
finite, for the buyer the best possible price ismin(Dprice) whilst for the seller is
max(Dprice). The contrary holds if we refer to year warranty.

Definition 9 (Feature Utilities). Let 〈f,Df 〉 be a pair made of a feature namef and
a concrete domainDf andrf be a reservation value forf . A feature utility function
uf : Df → [0, 1] is a monotonic function such that
– if uf monotonically increases then (see Figure 1)

{

uf (v) = 0, v ∈ [min(Df ), rf ]
uf (max(Df )) = 1

(8)

– if uf monotonically decreases then
{

uf (v) = 0, v ∈ [rf ,max(Df )]
uf (min(Df )) = 1

(9)

Given a buyer and a seller, ifuβ,f increases thenuσ,f decreases and vice versa.

The simplest utility functions are the two linear functions:

uf (v) =







1 −
v−min(Df )
rf−min(Df ) , v ∈ [min(Df ), rf )

0 , v ∈ [rf ,max(Df )]

(10)

if it monotonically decreases and

uf (v) =







1 −
v−max(Df )
rf−max(Df ) , v ∈ [rf ,max(Df ))

0 , v ∈ [min(Df ), rf ]

(11)

if it monotonically increases (see Figure 1).



Fig. 1.Linear utility functions

5 Computing Pareto agreements inP(N )

Among all possible agreements that we can compute, given an ontologyT as constraint,
we are interested in agreements that are Pareto-efficient. Among them, we are interested
on the ones either maximizing the sum of utilities—maximum welfare—or maximizing
their product—Nash-bargaining solution [27]. We now outline how an actual solution
can be found solving an optimization problem.

5.1 Objective functions

Here we define functions to be maximized to find a solution to anoptimization problem.
First of all, we introduce a set of fresh propositional atomsw.r.t. to the ones inA

(see Definition 2) and a new set of equivalence axioms toT . Let:

– {B1, . . . ,Bk, S1, . . . ,Sh} bek+h new propositional atoms different from the ones
in A;

– T ′ = T ∪ {Bi ⇔ βi|i = 1, . . . , k} ∪ {Sj ⇔ σj |j = 1, . . . , h}.

Now, it is easy to see that:

– The new ontologyT ′ is equivalent toT w.r.t. implication of formulas inLA,F (the
language we used to modelT ,β,σ and agents’ preferencesβi andσj). That is, given
a formulaψ ∈ LA,F , if T ′ |= ψ thenT |= ψ. Hence, we can useT ′ being sure
that implication relations will be exactly the same we wouldhave usingT .

– given an agreementI, we haveI |= βi iff I |= Bi andI |= σi iff I |= Si. That
is, if Bi is true in a modelI then the corresponding formulaβi is evaluatedtrue
w.r.t. I (and similarly forSi andσi). In order to check if a preference is evaluated
true in an agreement we can just look at the truthfulness value of the corresponding
propositional atom.



In order to formulate functions to be maximized involving preferences expressed
as formulas inP(N ), let {b1, . . . ,bk} binary variables one-one with{B1, . . . ,Bk} and
similarly{s1, . . . ,sh} for {S1, . . . ,Sh}. The functions representing respectively buyer’s
and seller’s utility over preferences can hence be defined as:

uβ,P(N )(I) =
k

∑

i=1

biuβ(βi) (12)

uσ,P(N )(I) =
h

∑

j=1

sjuσ(σj) (13)

where, given an agreementI, bi = 1 if BI
i = true, bi = 0 if BI

i = false and similarly
sj for Sj .

As highlighted in Section 4, also utilities over numerical features have to be taken
into account while finding the best solution for both the buyer and the seller. Hence, for
each featuref involved in the negotiation process we have afeature utility function for
the buyeruβ,f and one for the selleruσ,f . For instance, if we considerprice and the
linear function in equations (10) and (11) we likely will have:

u
β,price(v) =







1 −
v−max(Dprice)

r
β,price−max(Dprice)

0

u
σ,price(v) =







1 −
v−min(Dprice)

r
σ,price−min(Dprice)

0

5.2 The Optimization Problem

In order to find a Pareto agreement between the traders, we have to defineglobal utility
functions that take into account all their objective functions (both their preference utility
functions and their feature utility functions).

uG
β (I) = gβ(uβ,P(N ), uβ,f1

, . . . , uβ,fn
)

uG
σ (I) = gσ(uσ,P(N ), uσ,f1

, . . . , uσ,fn
)

wheren is the cardinality ofF , i.e., the number of concrete features involved in the
negotiation process.

Definition 10. Given a MBN-P(N ), we defineMAX -SUM-MBN-P(N ) as the problem
of finding an agreementI for whichuG

σ (I)+uG
β (I) is maximal andMAX -PROD-MBN-

P(N ) the problem of finding an agreementI for whichuG
σ (I) · uG

β (I) is maximal.

Clearly, every solution forMAX -SUM-MBN-P(N ) and MAX -PROD-MBN-P(N ) is
also a Pareto agreement, but not vice versa [14].
In addition to the set of functions to maximize, in our setting, we have three different
sets of constraints:



1. the (modified) ontologyT ′ — see the beginning of Section 5
2. strict requirementsβ andσ, including reservation values over numerical features
3. conditions (6) and (7) of an MBN on disagreement thresholds tβ andtσ — see the

definition of MBN-P(N ) at the end of Section 3

Notice that the constraints involving disagreements thresholds are already linear
ones. In order to model as linear constraints also the ones described in points 1 and 2 of
the above enumeration, we proceed as follows.

Clause reduction. Obtain a set of clausesT ′′ s.t. each clause contains only one single
numerical constraint andT ′′ is satisfiable iffT ′ ∪ {σ, β} does. In order to have such
clauses, if after using standard transformations in clausal form [23] you find a clause
with two numerical constraintsχ : A ∨ . . . (ficiki) ∨ (fjcjkj) pick up a new proposi-
tional atomA and replaceχ with the set of two clauses7

{

χ1 : A ∨A ∨ . . . ∨ (ficiki),
χ2 : ¬A ∨A ∨ . . . ∨ (fjcjkj)

}

As a final step, for each clause, replace¬(f ≤ k) with (f ≥ s(k)) and¬(f ≥ k) with
(f ≤ p(k)) (see (3) and 4).

Example 2.Suppose to have the clause

χ : ItalianMaker ∨ ¬AirConditioning ∨

(year warranty ≥ 3) ∨ ¬(price ≥ 20500)

First of all split the clause in the following two

χ1 : A ∨ ItalianMaker ∨ ¬AirConditioning ∨

(year warranty ≥ 3)

χ2 : ¬A ∨ ItalianMaker ∨ ¬AirConditioning ∨

¬(price ≥ 20500)

then change the second one in

χ2 : ¬A ∨ ItalianMaker ∨ ¬AirConditioning ∨

(price ≤ 20000)

Notice that here we considerǫ = 500 for the concrete domainDprice.

The last step is needed in order to have a straight mapping from logical clauses to linear
inequalities as shown in the following.

7 It is well known that such a transformation preserves logical entailment[37].



Encoding clauses into linear inequalities.We use a modified version of well-known
encoding of clauses into linear inequalities (e.g., [28, p.314]) so that every solution of
the inequalities identifies a model ofT ′′. If we identify true with values in[1 . . .∞) and
false with values in[0 . . . 1) each clause can be rewritten in a corresponding inequality.

– map each propositional atomA occurring in a clauseχ with a binary variablea. If
A occurs negated inχ then substitute¬A with (1−a), otherwise substituteA with
a.

– replace(f ≤ k) with 1
max(Df )−k

(max(Df ) − f) and(f ≥ k) with 1
k
f .8

After this rewriting it is easy to see that, considering∨—logical or—as classical addi-
tion, in order to have a clausetrue the evaluation of the corresponding expression must
be a value grater or equal to 1.

Example 3.If we considermax(Dprice) = 60000, continuing Example 2 we have
from χ1 andχ2 the following inequalities, respectively:

a + i + (1 − a) +
1

3
year warranty ≥ 1

(1 − a) + i + (1 − a) +
1

60000 − 20000
(60000 − price) ≥ 1

wherea, i, a are binary variables representing propositional termsA, ItalianMaker
andAirConditioning.

Looking at the example below, it should be clear the reason why only one numerical
constraint is admitted in a clause.

Example 4.Let us transform the following clause without splitting it in the two corre-
sponding ones

χ : ItalianMaker ∨ (year warranty ≥ 3) ∨ (price ≤ 20000)

the corresponding inequality is then

i +
1

3
year warranty+

1

60000 − 20000
(60000 − price) ≥ 1

The interpretation{year warranty = 2,price = 40000} is not a model forχ
while the inequality is satisfied.

Notice that the above encoding of the constraints involved in the negotiation process as
well as the definition ofMAX -SUM-MBN-P(N ) andMAX -PROD-MBN-P(N ) are not
depending from howuG

β anduG
σ are formalized.

If both uG
β anduG

σ are a linear combination of the preference and feature utility
functions,i.e., a weigthed sum ofuP(N ), uf1

, ...,ufn
normalized to 1, thenMAX -SUM-

MBN-P(N ) remains linear whileMAX -PROD-MBN-P(N ) is quadratic[17].

8 If in the previous step we had not replaced¬(f ≤ k) and¬(f ≥ k) with their equivalent
positive forms, then we would have had also to transform¬(f ≤ k) in 1

s(k)
f and¬(f ≥ k)

in 1
max(Df )−p(k)

(max(Df ) − f)



5.3 Computational issues

The preceding sections proved that bothMAX -SUM-MBN-P(N ) and MAX -PROD-
MBN-P(N ) could be solved by general mathematical programming methods, namely,
MAX -SUM-MBN-P(N ) could be solved by Integer Linear Programming (ILP) [28]
andMAX -PROD-MBN-P(N ) by quadratic programming [17]. Since both methods are
adequate to solve NP-complete Optimization (NPO) Problems[1], we can conclude
that both problems are contained in NPO.

Theorem 1. Given an instanceM of either MAX -SUM-MBN-P(N ) or MAX -PROD-
MBN-P(N ), finding an optimal solution forM is a problem inNPO.

Proof. The above Sections 5.1 and 5.2 proved that all constraints can be translated
into linear inequalities involving variables ranging overeither integer or rational num-
bers. In the case ofMAX -SUM-MBN-P(N ), the objective function is linear too, and
the optimization problem is known to belong to the class NPO [28]. In the case of
MAX -PROD-MBN-P(N ), the objective function is quadratic; but also in this case,the
optimization of a quadratic function over linear constraints is known to be in NPO [17].
2

We recall that when a problem is in NPO, one can ask whether there exists an al-
gorithm approximating the optimum within some guaranteed bound. In the theory of
Computational Complexity, this question amounts to ask whether one or both prob-
lems are NPO-complete, or instead whether they belong to thesmaller class APX of
problems that can be approximated within constant bounds. For instance, it is known
that MINIMUM VERTEX COVER can be easily approximated within a constant bound
of 2 [1]. The question is not merely theoretical, since if either problem admitted some
approximation algorithm, using general mathematical programming for solving them
might be an overshoot. However, the theorem below proves that this is not the case, by
giving an L-reduction [1] ofMAX -WEIGHTED-SAT to both problems.

Definition 11. MAX -WEIGHTED-SAT is the followingNPO-complete problem: given
set of atomsA, a propositional formulaϕ ∈ LA and a weight functionw : A → N,
find a truth assignment satisfyingϕ such that the sum of the weights of true variables is
maximum.

It is known thatMAX -WEIGHTED-SAT is NPO-complete [1], hence not approximable
within any constant bound. We now prove NPO-hardness of bothMAX -SUM-MBN-
P(N ) andMAX -PROD-MBN-P(N )—that is, we prove that tailored algorithms yield-
ing solutions approximated within a guaranteed bound from the optimum are unlikely
to exist—by reducingMAX -WEIGHTED-SAT to both problems.

Theorem 2. MAX -SUM-MBN-P(N ) andMAX -PROD-MBN-P(N ) areNPO-complete
problems, even ifT is in 3CNF and bothB andS are sets of positive literals.

Proof. LetW = 〈ϕ,w〉 be an instance ofMAX -WEIGHTED-SAT, with ϕ in 3CNF, and
letA = {A1, . . . ,An}.

First, we prove the claim forMAX -SUM-MBN-P(N ). Define an instanceM+



of MAX -SUM-MBN-P(N ) as follows. LetT = ϕ, B = S = A. Moreover, let
S =

∑n

i=1 w(Ai) and letuβ(Ai) = uσ(Ai) = 1
S
w(Ai) for i = 1, . . . , n. Finally,

let tβ = tσ = 0. Clearly, every solution forW is also a solution forM+, and for every
modelI, the value of the objective functionuβ,P(N )(I) + uσ,P(N )(I) is proportional
with a factor 2

S
to the one forW . Hence, the above is an L-reduction withα = 1

2S and
β = 1

2S.
Similarly, define an instanceM× of MAX -PROD-MBN-P(N ) as follows. LetT =

ϕ,B = A,S = {A0} whereA0 is a new atom not inA. Moreover, letS =
∑n

i=1 w(Ai)
and letuβ(Ai) = 1

S
w(Ai) for i = 1, . . . , n anduσ(A0) = 1. Finally, lettβ = tσ = 0.

Also in this case, every solution forW satisfies alsoT , and for every modelI the value
of the objective functionuβ,P(N )(I) · uσ,P(N )(I) of M× is proportional toW ’s one.
Hence, also the above reduction is an L-reduction withα = β = S.

On the other hand, letS be the smallest integer such that bothuβ(Ai) ·S, uσ(Ai) ·S
are integers for everyi = 1 . . . n. Also in this case, a solution forMAX -SUM-MBN-
P(N ) andMAX -PROD-MBN-P(N ) can be transformed into a solution forW by mul-
tiplying it by S. 2

The proof of the above theorem highlights the fact that a source of complexity for both
MAX -SUM-MBN-P(N ) andMAX -PROD-MBN-P(N ) comes from the inherent con-
flicts between the preferences of a single agent. In conclusion, linear and quadratic
programming are computationally adequate for solvingMAX -SUM-MBN-P(N ) and
MAX -PROD-MBN-P(N ).

6 The bargaining process

Summing up, the negotiation process covers the following steps:
Preliminary Phase.The buyer defines strictβ and preferencesB with correspond-

ing utilitiesuβ(βi) , as well as the thresholdtβ , and similarly the sellerσ,S, uσ(σj) and
tσ. Here we are not interested in how to computetβ ,tσ, and the weight of each prefer-
ence; we assume they are determined in advance by means of either direct assignment
methods (Ordering, Simple Assessing or Ratio Comparison) or pairwise comparison
methods (like AHP and Geometric Mean) [31]. Both agents inform the mediator about
these specifications and the ontologyT they refer to. Notice that for each feature in-
volved in the negotiation process, both inβ andσ their respective reservation values
are set either in the formf ≤ rf or in the formf ≥ rf .

Keeping the example referring to the automotive e-marketplace, buyer and seller
specify respectively their strict requirementsβ andσ, thresholdstβ andtσ, preferences
and the worth thereof as in the following:

β = Sedan ∧ (price ≤ 30000) ∧ (km warranty ≥ 120000) ∧ (year warranty ≥ 4)
β1 = GPS system ∧ AlarmSystem
β2 = ExternalColorBlack ⇒ Leather seats
β3 = (km warranty ≥ 140000)
uβ(β1) = 0.5
uβ(β2) = 0.2
uβ(β3) = 0.3



tβ =0.2

σ = Sedan ∧ (price ≥ 20000) ∧ (km warranty ≤ 160000) ∧ (year warranty ≤ 6)
σ1 = GPS system ⇒ (price ≥ 28000)
σ2 = (km warranty ≤ 150000) ∨ (year warranty ≤ 5)
σ3 = ExternalColorGray
σ4 = NavigatorPack
uσ(σ1) = 0.2
uσ(σ2) = 0.4
uσ(σ3) = 0.2
uσ(σ4) = 0.2
tσ =0.2

Let T be the ontology inP(N ), which the participants refer to:

T =

{

ExternalColorBlack ⇒ ¬ExternalColorGray
SatelliteAlarm ⇒ AlarmSystem
NavigatorPack ⇔ SatelliteAlarm ∧ GPS system

Negotiation-Core phase. For eachβi ∈ B the mediator picks up a new proposi-
tional atomBi and adds the axiomB1 ⇔ βi to T , similarly for S. Then, it transforms
all the constraints modeled inβ, σ and (just extended)T in the corresponding linear
inequalities following the procedures illustrated in Section 5.2. Given the preference
utility functions uβ,P(N )(I) =

∑k

i=1 biuβ(βi) anduσ,P(N )(I) =
∑h

j=1 sjuσ(σj),
the mediator adds to this set of constraints the ones involving disagreement thresholds
uβ,P(N ) ≥ tβ anduσ,P(N ) ≥ tσ.

With respect to the above set of constraints, the mediator solves an optimization
problem maximizing the sum (or the product) of global utilities for both buyeruG

β (I)

and selleruG
σ (I). The returned solution to the optimization problem is the agreement

proposed to the buyer and the seller. Notice that this solution is a Pareto optimal one,
furthermore the solution proposed by the mediator is also afair solution, if among all
the Pareto-optimal solutions we take the one maximizing theproduct of utilities of both
the buyer and the seller (see Section 5.2).

With reference to the previous example the mediator proposes the following agree-
ment to the players. We omit for the sake of conciseness propositional atoms interpreted
asfalse, then the final agreement is:

I : {SedanI = true,ExternalColorGrayI = true,

SatelliteAlarmI = true,GPS systemI = true,

NavigatorPackI = true,AlarmSystemI = true,

priceI = 28000,km warrantyI = 160000,year warrantyI = 5}

From this point on, it is atake-it-or-leave-itoffer, as the participants can either
accept or reject the proposed agreement [18].

7 Discussion

In this section we briefly analyze the properties characterizing the negotiation mecha-
nism here proposed.



Individual rationality. Individual rationality means that no agent will get a worse
payoff by participating in the mechanism as compared to not participating,i.e., an agent
does not ever lose by participating. This property is assured by the fact that each agent,
among his preferences, expresses a threshold, representing the disagreement payoff (see
Section 3). This threshold is one of the constraints of the optimization problem, which
automatically rules out all the agreements that are below that threshold, and that the
agent would have regretted if accepted. In other words, it isnot possible to have a final
agreement with a utility for one of the participant lower than his threshold, so that for
the agent would be better not participating at all.

Efficiency. Our mechanism is efficient, as the mediator computes a solution which
is Pareto-efficient (see Section 5.2). Besides, among all the possible Pareto-efficient
solutions, it chooses either the one maximizing the sum of the utilities (welfare max-
imization), or the one maximizing the product of the utilities, also known as thefair
solution or the Nash bargaining solution [27]9. Another definition of efficiency is the
ex-postefficiency, meaning that an agent will not change his strategy even after he ob-
served the result of the negotiation. That is he will not change his preferences after
observing the preferences expressed by the other agent. We do not address this issue in
this paper as the mediator does not disclose the agent’s preferences to the other party,
at the end of the negotiation the players can see only the proposed final agreement.

Budget balance.A mechanism is budget balanced when it does not make either a
profit or loss, meaning that the amount of money collected anddistributed from and to
the agents is equal. Our mechanism is budget balanced as the price paid by the buyer is
exactly the same of the price received by the seller. That is there is not any third party
that can either to subside or exploit the buyer and the seller[26]. In our framework the
mediator has more the role of a nonbinding arbitrator than a broker [35]. Even if we do
not exclude that the traders have to pay some fee if the transaction ends successfully.

Incentive compatibility. A mechanism is incentive compatible if each participant
can maximize his (expected) utility by reporting his true preferences, given that the
other participants do the same [26],i.e., the truth-telling strategy is the best response
strategy, given that also the other agents report truthfully. Our mechanism is not in-
centive compatible, but this is not a surprising result, as Myerson and Satterthwaite
[26] proved that in a bilateral trading with incomplete information10 it is impossible to
design a Bayes-Nash incentive-compatible mechanism that is simultaneously efficient,
budget balanced and individually rational. Therefore it isonly possible to design an
incentive-compatible mechanism that achieves any two of these three properties. They
proved the general impossibility to have such a mechanism without outside subsidies,
i.e., without relaxing the budget balanced property.

Furthermore we point out that in our mechanism the absence ofincentive compat-
ibility only affect the revelation of the reservation valueon numerical features,e.g.,
price, warranty, etc. Indeed an agent cannot manipulate themechanism expressing a

9 Observe that there can be many fair-Pareto-efficient solutions, or welfare solutions. Neverthe-
less, as they are perfectly equivalent, the mediator will simply randomly choose one of them
and propose that to the participants.

10 With the term “incomplete information” we indicate that each agent ignores both preferences
and the worth thereof of the opponent.



bigger, or smaller, number of preferences, as agent’s utility is normalized to 1, in order
to both rule out such a possibility and make utilities expressed by traders comparable
(see Def. 6 in Section 3). Besides, even if an agent expressesa fake preference this
fact could only lower its utility as, normalizing utilitiesto 1, the value of the “true”
preferences will be lowered.

Moreover the threshold is only used to check if an agreement can be accepted or not
by the agents. Therefore if agents express a bigger disagreement threshold they can only
rule out some agreements which instead were acceptable. In this way they would end
up with a disagreement payoff while they could have reached asatisfactory agreement
by acting truthfully. Similarly if they express a smaller threshold they would only add
the possibility to end up with an agreement which is not Pareto-efficient (w.r.t. their true
evaluation).

Besides, there is no incentive for agents to lie on preferences which do not involve
numerical features, because they could only end up with a cardifferent from their true
expectations,e.g., a car with a diesel engine instead that a gas one. For what concern
numerical features the argument is analogous to the one of the thresholds. Let’s take the
price example. If the buyer reveals a value lower than her true reservation value, while
the seller reveals one higher than his true value, then the buyer’s value might be lower
than the seller’s one, when, in fact, their true value were compatible. Hence, also in this
case the player could end up with a disagreement payoff, whenbeing truthfully they
could reach a better payoff. Therefore even if the mechanismis not incentive compatible
w.r.t. the numerical features the agents are motivated to act in a truthful way, because of
the risk to end up with a disagreement payoff when instead a better (efficient) agreement
exists.

8 Related Work and conlusion

Automated bilateral negotiation has been widely investigated, both in artificial intelli-
gence and in microeconomics research communities, so this section is necessarily far
from complete. Attempting a coarse subdivision, we may notethat, in classic game the-
ory, the bargaining problem has been modeled either ascooperativeor non-cooperative
games [16]. In the first approach, the aim is finding a solutiongiven a set of possible
outcomes, so given a set of axioms and a coalition, one determines how to split the sur-
plus among the participants. Instead, in non-cooperative games there are a well-defined
set of rules and strategies. In such games it is possible to define anequilibriumstrategy,
which ensures the rational outcomes of a game: no player could benefit by unilaterally
deviating from her strategy, given that the other players follow their own strategies [21].

AI-oriented research has usually focused on automated negotiation among agents
and on designing high-level protocols for agent interaction [22]. Agents can play dif-
ferent roles: act on behalf of a buyer or seller, but also playthe role of a mediator or
facilitator. Depending on the presence of a mediator we can distinguish betweencen-
tralized anddistributedapproaches. In the former, agents elicit their preferencesand
then a mediator, or some central entity, selects the most suitable deal based on them. In
the latter, agents negotiate through various negotiation steps reaching the final deal by
means of intermediate deals, without any external help [8].Distributed approaches do



not allow the presence of a mediator because—as stated by Kraus [20, p.25]—agents
cannot agree on any entity, so they do not want to disclose their preferences to a third
party, that, missing any relevant information, could not help agents. In dynamic sys-
tems a predefined conflict resolution cannot be allowed, so the presence of a mediator
is discouraged. On the other hand the presence of a mediator can be extremely use-
ful in designing negotiation mechanisms and in practical important commerce settings.
According to MacKie-Mason and Wellman [24], negotiation mechanisms often involve
the presence of a mediator11, which collects information from bargainers and exploits
them in order to propose an efficient negotiation outcome. The presence of a trusted
third party can help parties to reach a Pareto-efficient agreement. As pointed out by
Raiffa et al. [35, p.311], usually bargainers may not want todisclose their preferences
or utilities to the other party, yet they can be more willing to reveal these information
to a trusted—automated—mediator, helping negotiating parties to achieve efficient and
equitable outcomes. The presence of a mediator and the one-shot protocol is an in-
centive for the two parties to reveal the true preferences, because they can trust in the
mediator and they have a single possibility to reach the agreement with that counterpart.

Several approaches adopt a mediator [12, 19, 15]. In the paper by Fatima et al. [12]
an extended alternating-offers protocol is presented, with the presence of a mediator,
which improves the utility of both agents. No inter-dependent issues are taken into ac-
count. Klein et al. [19] propose a mediated-negotiation approach for complex contracts,
where inter-dependency among issues is investigated. The agreement is a vector of is-
sues, having value 0 or 1 depending on the presence or absenceof a given contract
clauses. Only binary dependencies between issues are considered: the agent’s utility
is computed through an influence matrix, where each cell represents the utility of a
given pair of issues. However in this approach no semantic relations among issues are
investigated.

A large number of negotiation mechanisms have been proposedand studied in
the literature; it is possible to distinguish, among other,game-theoretic ones [20, 36],
heuristic-based approaches [12, 10] and logic-based approaches. Although game-theoretic
and heuristic-based approaches are highly suitable for a wide range of applications, they
have some limitations and disadvantages. Often in game-theoretic approaches it is as-
sumed that agents have a complete knowledge about the space of possible outcomes,
as well as unbounded computational resources [34]. On the other hand, heuristic-based
approaches use empirical evaluations in order to find an agreement, which can be sub-
optimal, as they do not explore the entire space of possible outcomes. With respect to
our approach, the main drawback is that, usually, the issuesto negotiate on are fixed in
advance and are known by both agents, as in multi-dimensional auctions [30]. Hence
agents are not allowed to exchange any additional information during the negotiation
process [34].

11 The most well known –and running– example of mediator is eBay site, where a mediator
receives and validates bids, as well as presenting the current highestbid and finally determining
the auction winner [24]. Observe also that eBay retains private information of traders, such as
selling reservation value.



In the following we give a brief overview of logic-based approaches to automated
negotiation, comparing our approach with existing ones andhighlighting relevant dif-
ferences.

8.1 Logic-based approaches

There is a huge amount of literature focused on argumentation-based negotiation [34,
29, 11, 3].In these approaches an agent can accept/reject/critique a proposal of its op-
ponent, so agents can argue about their beliefs, given theirdesires and so pursue their
intentions [29]. With respect to our framework, these approaches require a richer com-
munication language (e.g., modal logic) in order to exchange information and a specific
negotiation protocol to constrain the use of the language. While we use a one-shot pro-
tocol with the presence of a mediator, which ensures the termination after only one
round, in argumentation-based frameworks, usually, agentinteractions go back and
forth for multiple rounds, without the intervention of a third party. Moreover agents
have to be able not only to evaluate opponent proposals or possible agreements, but
also generate a critique or a counter-proposal, given the opponent’s one. With refer-
ences to BDI approaches proposed by Parsons et al. [29],DesiresandIntentionsmatch
in our framework with Preferences, andBeliefsare implicit in each agent: the agent
enters the e-marketplace because he believes there will be another agent having what
he is searching for.

Several recent logic-based approaches to negotiation are based on propositional
logic. Bouveret et al. [6] use Weighted Propositional Formulas (WPF) to express agents
preferences in the allocation of indivisible goods, but no common knowledge (as our
ontology) is present. The use of an ontology allowse.g., to catch inconsistencies be-
tween demand and supply or find out if an agent preference is implied by a preference
of its opponent, which is fundamental to model an e-marketplace. Chevaleyre et al.
[7] classify utility functions expressed through WPF according to the properties of the
utility function (sub/super-additive, monotone, etc.). We used the most expressive func-
tions according to that classification, namely, weights over unrestricted propositional
formulas.

Zhang and Zhang [42] adopt a kind of propositional knowledgebase arbitration
to choose a fair negotiation outcome. However,common knowledgeis considered as
just more entrenched preferences, that could be even dropped in some deals. Instead,
the logical constraints in our ontologyT mustalwaysbe enforced in the negotiation
outcomes. Finally we devised aprotocolwhich the agents should adhere to while nego-
tiating; in contrast, Zhang and Zhang [42] adopt a game-theoretic approach, presenting
no protocol at all, since communication between agents is not considered.

We borrow from Wooldridge and Parsons [40] the definition of agreement as a
model for a set of formulas from both agents. However, Wooldridge and Parsons [40]
only study multiple-rounds protocols and the approach leaves the burden to reach an
agreement to the agents themselves, although they can follow a protocol. The approach
does not take preferences into account, so that it is not possible to guarantee the reached
agreement is Pareto-efficient. Our approach, instead, aimsat giving anautomatedsup-
port to negotiating agents to reach, in one shot, Pareto agreements. The work presented



here builds on the work by Ragone et al. [33], where a basic propositional logic frame-
work endowed of a logical theory was proposed. Afterward Ragone et al. [32] extend
the approach also discussing complexity issues. In this paper we further extended the
framework, introducing the extended logicP(N ), thus handling numerical features,
and showed we are able to compute Pareto-efficient agreements, by solving an opti-
mization problem and adopting a one-shot negotiation protocol.

8.2 Constraint Satisfaction Problems (CSP)

Our framework shares some similarities with approaches related toDistributedCSPs
andSoftCSPs. For what concerns the former, while in Distributed CSPs constraints are
distributed among agents and each agent controls its own setof variables [41], in our ap-
proach variables (issues) do not belong to any agent and there is a mediator, who rather
than simply finding a legal assignment (an assignment to variables that does not violate
any constraints), computes assignments which are Pareto-efficients. A further extension
of CSPs considering also preferences among solutions is Soft CSPs: preferences are ex-
pressed as soft constraints and a solution has to satisfy allhard constraints and as much
as possible of soft constraints (preferences) [4]. Depending on the approach, the most
important ones (hierarchicalCSP[39]) can be satisfied, or the number of violated con-
straints (Partial CSP[13]) can be minimized or some satisfaction level (semiring-based
CSP[4]) can be maximized. Our approach is more similar to thesemiring-based one,
however in such an approach only a partial order between preferences can be modeled
and no conditional preference can be expressed, even if someattempts have been done
by Domshlak et al. [9] to mix hard and soft constraints with CP-nets [5], which ex-
press qualitative preferences (like conditional ones) over the values of a single property
of the outcomes. Moreover, in this approach the translationof conditional preference
statements into soft constraints requires some approximations in order to improve the
computational efficiency of reasoning about this statements.

8.3 Conclusion

We are aware that there is no universal approach to automate negotiation fitting every
scenario, but rather several frameworks suitable for different scenarios, depending on
the assumptions made about the domains and agents involved in the interaction. Here,
we have proposed a logic-based framework to automate multi-issue bilateral negotia-
tion in P2P e-marketplaces, where agents communicate usingthe logicP(N ), able to
handle both numerical features and non numerical ones. Modeling issues in aP(N )
ontology it is possible to catch inconsistency between preferences and then reach con-
sistent agreements, as well as to discover implicit relations (such as implication) among
preferences, which do not immediately appear at the syntactic level. The logic has been
mixed to utility theory in order to model preferences both qualitative and quantitative.
Exploiting a mediator it is possible to overcome the problemof incomplete informa-
tion about opponent’s preferences. We adopted a one-shot protocol, using a mediator to
solve an optimization problem that ensures the Pareto-efficiency of the outcomes. We
have also investigated the complexity of the problem of finding Pareto-efficient solu-
tion, proving thatMAX -SUM-MBN-P(N ) is a NPO-complete problem.



In the near future we plan to extend the approach using more expressive logics,
namely, Description Logics, to increase the expressiveness of supply/demand descrip-
tions. We are also investigating other negotiation protocols, without the presence of a
mediator, allowing to reach an agreement in a reasonable amount of communication
rounds. The use of aggregate operators to be used in order to express both strict re-
quirements and preferences is also under investigation.
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