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Abstract: In a semantic Web service (SWS) matchmaking
process, given a request, it is obvious that not only a list of
services should be returned, but also a ranking of compatible
SWSs should be provided. Obviously having semantically an-
notated services, the ranking should be based evaluating se-
mantic similarity between descriptions. Furthermore, the avail-
ability of such descriptions makes explanation of rank possible
and can provide useful information in order to modify or re-
fine the original request. Here we summarize results obtained
on this challenging topic exploiting non-monotonic inferences
in Description Logics, with particular reference to their imple-
mentation within the MaMaS-tng engine.
Keywords: matchmaking, Semantic web, Web services, rank-
ing, abduction, contraction.

1. The need for a logic-based approach

We start with a description of approaches to resource retrieval,
highlighting limitations of non-logical approaches, then dis-
cussing the general Knowledge Representation principles that
a logical approach may yield, before moving on to the De-
scription Logic (DL) setting we adopt1. We refer the reader
to [6, 2] for several examples and wider argumentation. First
of all, we note that using standard relational database tech-
niques to model a resource retrieval framework, there is a need
to completely align the attributes of the offered and requested
resources descriptions, in order to evaluate a match. If requests
and offers are simple names or strings, the only possible match
would be identity, resulting in an all-or-nothing approach to the
retrieval process. Vague query answering, proposed by [14],
was an initial effort to overcome limitations of relational data-
bases. Classical Information Retrieval can be used, too, thus re-
verting the search for a matching request to similarity between
weighted vectors of stemmed terms, as proposed in [11, 16].
The need to work in someway with approximation and rank-
ing in DL-based approaches to matchmaking has also recently
led to adopting fuzzy-DLs, ase.g., in [12, 15] or hybrid ap-
proaches, mixing semantics with classical unstructured text in-
formation retrieval [10, 13]. A further approach structures re-
source descriptions as set of words. This formalization allows
to evaluate not only identity between sets, but also set-based re-
lations between descriptions, such as inclusion, partial overlap,
cardinality of set difference. Modeling resource descriptions
as set of words is anyway too much sensible to the choice of
words employed to be successfully used: the fixed terminology

1 we assume hereafter the reader be familiar with basics of Description Logics
formalisms

misses meaning that relate words. Such a problem can be over-
come by giving terms a logical and shared meaning through
an ontology. Nevertheless set-based approaches already have
properties that are fundamental in a matchmaking and retrieval
process. If we are searching for a resource described through a
set of words, we are also interested in sets including the one we
search, as they fulfill the resource to retrieve. Moreover even if
there are characteristics of the retrieved resource not elicited in
the description of the searched resource, an exact match is still
possible because absent information have not to be considered
negative. The two statements above may be summarized by the
following property:
PROPERTY1.Open-world descriptions. The absence of a
characteristic in the description of a resource to be retrieved
should not be interpreted as a constraint of absence. Instead it
should be considered as a characteristic that could be either
refined later or left open if it is irrelevant for the user searching
for the resource.
Obviously, some specific characteristic might be declared to
be closed, as long as such a closure is made piecewise, using
some known declarative toole.g., Autoepistemic DLs [7] or
Circumscription in DLs [9]. The set-based match evaluation is
non-symmetric: if we search for a resourceW1, whose describ-
ing set of words is included in a set characterizing resourceW2,
we may considerW2 a resource perfectly satisfying the request
for W1. On the other hand if we use the description ofW2 for the
search,W1 may also satisfy the request only partially, as some
of the terms describingW2 may be not included in theW1 set.
PROPERTY2.Non-symmetric evaluation. Given two semantic-
based descriptionsW(for semantic Web service) andQ (for
Query), a matchmaking system may give different evaluations
depending on whether it is trying to matchWwith Q, or Qwith
W— i.e., depending on who is going to use this evaluation.
From now on we assume that resource descriptions, requested
and offered, are expressed in a DL, equipped with a model-
theoretic semantics. This approach includes the sets-of-keywords
one, since a set of keywords can be considered also as a con-
junction of concept names. We also assume that a common
ontology is established, as a TBoxT in DL.

2. Explanation Oriented Matchmaking

DL-based systems usually provide two basic reasoning ser-
vices forT , namely satisfiability and subsumption.They can
be defined, informally, as follows:
Concept Satisfiability: Given an ontologyT (for Terminology)
modeling the domain we are investigating on, and a descrip-



tionQof a resource referring to the ontology: is the information
modeled in the description consistent with the one in the on-
tology?
Subsumption:Given an ontologyT modeling the domain we
are investigating on, and two resources described by expres-
sions –Q, W– referring to the information modeled in the on-
tology: is the information describing a resource more general
than the other one’s description?
Both Subsumption and Concept Satisfiability are adequate in
all those scenarios where a yes/no answer is enough. For exam-
ple, given a resource and a request represented respectively by
a conceptWand a conceptQ, using Concept Satisfiability we
are able to determine whether they are compatible,i.e., Wmod-
els information which is not in conflict with the one modeled
by Q. This task can be performed checking the satisfiability
of the conceptWu Qwith respect to a reference ontologyT .
On the other hand Subsumption can be used to verify, for ex-
ample, if a resource described byWsatisfies a requestQ. It is
easy understandable that if the relationWv Qholds, thenWis
more specific thanQand contains at least all the requested fea-
tures. In [1, 4] Concept Contraction and Concept Abduction,
non-standard inference services for DLs, were introduced and
defined. In this subsection we briefly recall their definitions,
explaining their rationale and the need for them in resource
retrieval.

2.1 Nonmonotonic Inferences

Starting with the conceptsWandQ, if their conjunctionWu Q
is unsatisfiable in the TBoxT representing the ontology,i.e.,
they are not compatible with each other, our aim is to retract
requirements inQ, G (for Give up), to obtain a conceptK (for
Keep) such thatK uWis satisfiable inT .
DEFINITION 1.LetL be a DL,W, Q, be two concepts inL, and
T be a set of axioms inL, where bothWandQare satisfiable
in T . A Concept Contraction Problem(CCP), identified by
〈L, Q, W, T 〉, is finding a pair of concepts〈G, K〉 ∈ L × L
such thatT |= Q≡ G uK, andT |= K uW6≡ ⊥. We callK
a contractionof Qaccording toWandT .
We note that there is always the trivial solution〈G, K〉 =
〈Q,>〉 to a CCP2. This solution corresponds to the most dras-
tic contraction, that gives up everything ofQ. In our resource
retrieval framework, it models the (infrequent) situation in
which, in front of some very appealing resourceW, incompat-
ible with the requested one, a user just gives up completely
his/her specificationsQ in order to meetW. At a first glance it
would seem more reasonable the solution〈G, K〉 = 〈Q,⊥〉 in-
stead of〈G, K〉 = 〈Q,>〉. Actually, we can read the former
solution as “After giving up everything in my original query,
I want nothing” and the latter as “After giving up everything
in my original query, whatever is good for me”. In a match-
making scenario, this solution is the most correct one. On the
other hand, whenWu Q is satisfiable inT , the ”best” possi-
ble solution is〈>, Q〉, that is, give up nothing – if possible.
Since usually one wants to give up as few things as possible,
some minimality in the contraction must be defined [8, 1, 3].

2 With > we refer to the most generic concept in an ontology. We use⊥ to
denote the most specific concept (the unsatisfiable concept). In OWL words,
they are represented by<owl:Thing> and<owl:Nothing> respectively.

If the SWS descriptionWand the queryQare compatible with
each other, the partial specifications problem still holds, that
is, it could be the case thatW– though compatible – does not
imply Q. Using DL syntax we write:T |= Qu W 6v ⊥ and
T |= W 6v Q. Then, it is necessary to assess what should be
hypothesized (H) in Win order to completely satisfyQ.
DEFINITION 2.Let L be a DL, W, Q, be two concepts inL,
and T be a set of axioms inL, where bothWand Q are sat-
isfiable in T . A Concept Abduction Problem(CAP), identi-
fied by 〈L, Q, W, T 〉, is finding a conceptH ∈ L such that
T |= Wu H v Q, and moreoverWu H is satisfiable inT .
We callH a hypothesisaboutWaccording toQandT .
Observe that in the definition, we limit to satisfiableWandQ,
sinceQ unsatisfiable implies that the CAP has no solution at
all, while Wunsatisfiable leads to counterintuitive results (¬Q
would be a solution in that case). IfW v Q then we have
H = > as a solution to the related CAP. Hence, Concept
Abduction extends subsumption. On the other hand, ifW≡ >
thenT |= H v Q. Notice that both Concept Abduction and
Concept Contraction can be used for respectively subsumption
and satisfiability explanation. For Concept Contraction, having
two concepts not compatible with each other, in the solution
〈G, K〉 to the CCP〈L, Q, W, T 〉, G represents ”why”Qu W
are not compatiblei.e., which part of the query is conflicting
with SWS description. For Concept Abduction, havingQandW
such thatT |= W6v Q, the solutionH to the CAP〈L, Q, W, T 〉
represents ”why” the subsumption relation does not hold.H
can be interpreted aswhat is requested inQand not specified
in W.

2.2 Logic-Based Matchmaking via Concept Abduction
and Concept Contraction

Both Concept Abduction and Concept Contraction can be used
to suggest guidelines on what, given an offered resourceW, has
to be revised and/or hypothesized to obtain a full match with
the request. Let us suppose to have a requestQ, a resourceW
and an ontologyT such thatT |= Qu W 6v ⊥, i.e., they are
incompatible with each other. In order to gain compatibility, a
Concept Contraction is needed so that giving upG in Q, the
remainingK could be satisfied byW. Now, if T 6|= Wv K, the
solutionHK to the CAP〈L,K, W, T 〉 represents what is inK
and is not specified inW. As theWobtained is an approximated
match ofQ, then evaluating how good is the approximation
would be extremely useful. Given more than one resource,
which is the best approximation? How a numerical score can
be assigned to the approximation, based onK,H and G, in
order to rank the resources? Algorithm 8 provides answers to
the raised issues.

[lines 1-4] Having a requestQand an offered serviceW, if
their descriptions conjunction is not satisfiable w.r.t. the ontol-
ogy they refer to (i.e., they are not compatible with each other
for some concepts in their descriptions), first a contraction onQ
is performed in order to regain compatibility [line 2] and then
[line 3] we compute what has to be hypothesized inWin order
to completely satisfyQ (its contraction). The returned values
represent:
〈G, K〉: The first item is what has to be given up in the request
– G – in order to continue the process, or, in other words, why



Algorithm: explain(W, Q, T ,L)

Input : W, Qconcepts inL such thatT |= WandT |= Q
Output : 〈G, K〉, H i.e., the part inQthat should be

retractedG and keptK and the part inWthat
should be hypothesized to find a full match
betweenWandQ

if T |= Qu Wv ⊥ then1
〈G, K〉 = contract(W, Q, T );2
HK = abduce(W, K, T );3
return 〈G, K〉, HK ;4

else5
H = abduce(W, Q, T );6
return 〈>, Q〉, H;7

end8

Algorithm 1 :

Q is not compatible withW. The second item is the contracted
requestK that is no more in conflict with the request.
HK : After the contraction ofQ, the request is represented by
K, i.e. the portion ofQ that is compatible withW. HK repre-
sents what has to be hypothesized inWin order to completely
satisfyK, or, in other words, whyWdoes not completely sat-
isfy K.
[lines 5-7] If the conjunction ofQ’s andW’s description is sat-
isfiable w.r.t. the ontology they refer to, then no contraction is
needed and only an abductive process is carried out.
The algorithmexplain returns values useful in a retrieval sys-
tem where explanation of the results is needed and/or a belief
revision process is admitted.
EXAMPLE 1.As a simple example, suppose you are looking
for “smoking room and price includes a Wi-Fi connection”
and you find two web services offering respectively “bedrooms
and price includes a cable Internet connection” and “smoking
twin rooms with Internet connection included”. It is easy to
see that both semantic web service descriptions do not match
completely the request. The question is: why? How to auto-
matically compute the reasons why the query is not matched
by the web service descriptions? In formulas, w.r.t. to the on-
tology in Figure 1, we can represent the above query and SWS
descriptions as:
Q = SmokingRoom u ∀incl .WiFi

W1 = Bedroom u ∃incl u
∀incl .CableConnection

W2 = TwinRoom u SmokingRoom u ∃incl u
∀incl .InternetConnection

If we considerQandW1 we see that they are inconsistent with
each other:T |= QuW1 v ⊥. If we useexplain(W1, Q, T ,L),
the algorithm recognizes the inconsistency (row 1) and com-
putes a contracted version ofQin line 2. In this case a possible
contraction would be:

〈G, K〉 = 〈∀incl .WiFi ,

SmokingRoom u ∀incl .InternetConnection 〉

In other words the algorithm is suggesting: “if you are inter-
ested inW1 you have to know that you surely will not have a
Wi-Fi connection. I suggest to contract your request giving up
your Wi-Fi specification”.

With respect to the contracted query (represented byK)
explain(W1, Q, T ,L) tries to find what is underspecified inW1
solving a concept abduction problem [line 3].

H = ∀guest .Smoker

This result can be read as “based on what is explicitly stated
in W1 I cannot establish if the rooms are smoking rooms or no

InternetConnection w CableConnection tWiFi

disj(WiFi , CableConnection )

SwimmingPool t SPA v FitnessFacilities

SAT-TV v TV

HotelFacilities w TVt FitnessFacilities t
tBreakfast t HotelFacilities

Bedroom ≡ ∃bed u ∃guest

SingleRoom ≡ Bedroom u (≤ 1bed ) u
u(≤ 1guest )

DoubleRoom ≡ Bedroom u (≤ 1bed ) u
u(≤ 2guest )

TwinRoom ≡ Bedroom u (= 2bed ) u
u(≤ 2guest )

SmokingRoom ≡ Bedroom u ∀guest .Smoker

NoSmokingRoom ≡ Bedroom u ∀guest .¬Smoker

Fig. 1. The reference ontology.
disj(WiFi , CableConnection ) represents

WiFi v ¬CableConnection andCableConnection v ¬WiFi .

smoking ones. I have no information on this”. Summing up,
explain(W1, Q, T ,L) explains the reasons whyW1 is not a full
match forQsaying:
- “There is something inW1 which is explicitly in conflict with
yourQ”:

G = ∀incl .WiFi

- “There is something you requested that is not specified in any
way inW1. There are some missing information”:

H = ∀guest .Smoker

In a similar way, if we considerQandW2 we see that they are
not conflicting with each other. Hence, there is nothing to give
up and thenexplain(W2, Q, T ,L) in line 6 computes:

H = ∀incl .WiFi

That is, based on the description ofW2, it is not possible to
establish if the Wi-Fi connection is included or not.

The algorithmexplain does not depend on the particular
DL adopted. Based on the minimality criteria proposed in [1]
the lengthH of the solution to a CAP for anALN DL can
be computed as proposed in [5]. Hence, a relevance rank-
ing score can be computed by an utility function defined as
U(G, K,HK).

3. Dealing with User Preferences

In a semantic discovery process, a user query, can be split of-
ten into two separate parts:strict requirements andprefer-
ences. Strict requirements represent what, in the query, has
to be strictly matched by the semantic web service descrip-
tion. Preferencescan be seen as soft user requirements. In
other words, the user will accept even a web service whose
functionalities do not provide exactly the ones represented by
a preference. Usually, a weight is associated to each prefer-
ence in order to represent its worth (absolute or relative to the
other preferences). Hence, for a user queryQ we distinguish
between a conceptQS representing strict requirements and a
set of weighted concepts〈Q, v〉 whereQ is a DL concept and
v is a numerical value representing preference worth. It should
be clear that a matchmaking process has not to be performed



w.r.t. QS . It represents what the user is not willing to risk on
at all. He does not want to hypothesize nothing on it. An ap-
proximate solution would not be significant forQS . On the
other hand, even though a preference is satisfiedwith a certain
degree(not necessarily completely) the user will be satisfied
with a certain degreeas well. Given an ontologyT , a seman-
tic web service descriptionW, a strict requirements queryQS

and a set of preferencesP = {〈Qi, vi〉} we compute a global
ranking score using Algorithm 2. Here we retrieve,i.e., assign
score ≥ 0, only those web services whose description fully
satisfies user strict requirements. Once we have a web service
description such thatT |= Wv QS , then we compute how
much it satisfies user preferences. For each preference we take
into account bothU(explain(W, Qi, T ,L)) i.e., the similarity
degree computed using non-standard reasoning, and the value
expressed by the user to represent preference worth.

Algorithm: preference retrieve(W, QS ,P, T ,L)

score = 0 ;
if T |= Wv QS then

foreach 〈Qi, vi〉 ∈ P do
score = score +vi · U(explain(W, Qi, T ,L));

end
end
return score;

Algorithm 2 :

4. Illustrative example

In order to describe howpreference retrieve(W, QS ,P, T ,L)
works, in Figure 2 we model a simple hotel booking scenario.
Strict requirementsQS , preferences and semantic web service
descriptionsP = {〈Q1, v1〉, 〈Q2, v2〉, 〈Q3, v3〉}, W1, W2 and
W3 are modeled with respect to the toy ontologyT reported
in Figure 1. It is easy to see thatT |= W1 v QS ; T |=
W2 v QS ; T 6|= W3 v QS . SinceW3 does not satisfy strict
requirementsQS , differently from W1 and W2, it will not be
selected for the matchmaking process. Then we proceed ap-
plying algorithmretrieve to remaining available services. We
recall thatretrieve returns a 3-tuple whose first item repre-
sents what is incompatible (and should be given up) in the
request w.r.t. the service, while the second item represents
what is compatible and can be kept in the request. The third
item corresponds to what has to be hypothesized (to get a full
match) w.r.t. the already contracted part of the request. With
respect to Figure 2 we can say:(1) W1 is compatible withQ1.
No contraction of preference specification is needed. In fact,
〈G1,1,K1,1〉 = 〈>, Q1〉. SinceW1 completely satisfiesQ1 no
specific hypotheses have to be formulated. ThenH = >; (2)
W1 is not compatible withQ2. Specification on smoking cannot
be satisfied. With respect to the contracted preference, inW1

nothing is specified about SAT TV;(3) W1 is compatible with
Q3. No contraction of preference specification is needed. InW1

nothing is specified about Wi-Fi connection;(4) W2 is not com-
patible withQ1. With respect to the definition ofTwinRoom
given in the ontology, the specification related to the minimum
number of beds has to be given up. In fact, sinceW2 is offering
double rooms, then you could also have 2 beds in your room.
Finally,W2 completely satisfies the contracted preference spec-

ificationK2,1 = (≤ 2bed )u(≥ 1guest )u(≤ 2guest ); (5)
W2 is compatible withQ2. Unfortunately, inW2 is not specified
if smoking is allowed or not;(6) W2 is compatible withQ3.
SinceW1 completely satisfiesQ1 no specific hypotheses have
to be formulated.

5. How to computeU(explain(W, Q, T ,L)): the
MaMaSway

MaMaS(MatchMaking Service) is a DL reasoner forALN
implementing algorithms for non-monotonic reasoning and
semantic-based ranking. It is able to solve both concept abduc-
tion problems and concept contraction ones inALN . Using
MaMaS, given an ontologyT , it is also possible to rank a WS
description w.r.t. a query usingrankPotential algorithm as
described in [5]. In a nutshell, given two concept descriptions
QandW, rankPotential compares their normalized forms and
evaluate a score representing the length of the corresponding
concept abduction problem.
rankPotential. Given twoALN conceptsWandQ in normal
form w.r.t. an ontologyT in ALN , rankPotential(W, Q)
computes the “length” of a solution to a concept abduction
problem [6]. Note that given an ontologyT and a queryQ, the
maximum value forrankPotential(W, Q) is computed when
T |= W≡ >. Hence, given a queryQand a concept descrip-
tion C, the value resulting fromrankPotential(>, Q) can be
used to normalizerankPotential(C, Q). In the following we
show how to userankPotential in order to compute a value
representing a similarity degree of a WS descriptionWand a
query Q both normalized w.r.t. an ontologyT . We compute
N , g and h as: N = rankPotential(>, Q), represents the
maximum score computed byrankPotential associated to
the solution of a concept abduction problem, given a query
Q and an ontologyT ; g = rankPotential(Q,K) (whereK
is the result ofretrieve(W, Q, T ,ALN )), represents a how
much ofQ has been given up inK. In other wordsg assigns
a score toG resulting fromretrieve(W, Q, T ,ALN ); h =
rankPotential(W,K), represents how much ofK, resulting
from retrieve(W, Q, T ,ALN ), is not specified inW. It assigns
a score toH solution ofretrieve(W, Q, T ,ALN ). Based on
N , g andh a possible formulation ofU(retrieve(W, Q, T ,ALN ))
is: U = (1 − g

N ) · (1 − h
N ). Notice that even thoughH, does

not explicitly appear in the computation ofU it is implicitly
used in the computation ofh.

6. Illustrative example (cont’d)

In order to show how to userankPotential to compute
U(retrieve(W, Q, T ,ALN )), let us considerW1, W2 andD1

and Q2 in Section 4 and compute their normalized versions
as shown in Figure 2. SinceT 6|= Q1 u W1 v ⊥, then we
do not have to contractQ1 w.r.t. W1 (see Section 4) and then
we haveg1,1 = 0. On the other side, sinceT |= W1 v Q1

then h1,1 = 0. Differently form the previous case,T |=
Q1 u W1 v ⊥. Hence, we contractQ1 and we have as a re-
sult 〈G2,1,K2,1〉 = contract(W2, Q1, T ).
Knorm

2,1 = (≤ 1bed )u (≥ 1guest )u (≤ 2guest ); g2,1 = 1; h2,1 = 0

SinceT |= Q2 uW1 v ⊥, then we contractQ2 w.r.t. W1 and we
have〈G1,2,K1,2〉 = contract(W1, Q2, T ) (see Section 4).



QS = Bedroom u ∀incl .∀facility .InternetConnection “ I want to book a bedroom whose price includes the use of the Internet”.

Q1 = TwinRoom “ It would be nice if it was a twin room”.

Q2 = NoSmokingRoomu ∀incl .∀facility .SAT-TV “ I would prefer a no smoking room with SAT TV. I would prefer a no smoking room”.

Q3 = ∀incl .∀facility .WiFi “A Wi-Fi connection would be appreciated”.

W1 = TwinRoom u ∃incl u ∀incl .(∃facility u ∀facility .(TVu CableConnection )) u
SmokingRoom “Booking twin rooms. Price includes Internet connection and cable TV. Smoking is allowed”.

W2 = DoubleRoom u ∃incl u ∀incl .(∃facility u ∀facility .(SAT-TV uWiFi ))

“Booking double rooms. Price includes Wi-Fi Internet connection and SAT TV.”

W3 = SingleRoom u ∃facility u ∀facility .(SPAuWiFi ) “Single rooms. The hotel has a SPA and Wi-Fi Internet connection”.

explain(W1, Q1, T ,L) = 〈>, Q1〉,> (1)

explain(W1, Q2, T ,L) = 〈∀guest .¬Smoker , (≥ 1bed ) u (≥ 1guest ) u ∀incl .∀facility .SAT-TV〉, ∀incl .∀facility .SAT-TV (2)

explain(W1, Q3, T ,L) = 〈>, Q3〉, ∀incl .∀facility .WiFi (3)

explain(W2, Q1, T ,L) = 〈(≥ 2bed ), (≤ 2bed ) u (≥ 1guest ) u (≤ 2guest )〉,> (4)

explain(W2, Q2, T ,L) = 〈>, Q2〉, ∀guest .¬Smoker (5)

explain(W2, Q3, T ,L) = 〈>, Q3〉,> (6)

Qnorm
1 = (≥ 2bed ) u (≤ 2bed ) u (≥ 1guest ) u (≤ 2guest ); N1 = 4

Qnorm
2 = (≥ 1bed ) u (≥ 1guest ) u ∀guest .¬Smoker u ∀incl .∀facility .(SAT-TV u TVu HotelFacilities ); N2 = 6

Wnorm
1 = (≥ 2bed ) u (≤ 2bed ) u (≥ 1guest ) u (≤ 2guest ) u ∀guest .Smoker u (≥ 1incl ) u ∀incl .((≥ 1facility ) u

u∀facility .(TVu HotelFacilities u CableConnection u ¬WiFi u InternetConnection ))

Wnorm
2 = (≥ 1bed ) u (≤ 1bed ) u (≤ 2guest ) u (≥ 1guest ) u (≥ 1incl ) u ∀incl .((≥ 1facility ) u

u∀facility .(SAT-TV u TVu HotelFacilities uWiFi u ¬CableConnection u InternetConnection ))

Fig. 2. User request and service descriptions in the reference scenario; Explanation results in the matchmaking process;
Normalized version ofQ1, Q2 (with corresponding valuesN1 andN2) W1 andW2.

Knorm
1,2 = (≥ 1bed ) u (≥ 1guest ) u ∀incl .∀facility .(SAT-TV u

u TVu HotelFacilities ); g1,2 = 1; h1,2 = 2.

SinceT 6|= Q2 u W2 v ⊥, then we do not have to contract
Q2 w.r.t. W2 (see Section 4) and then we haveg2,2 = 0 and
h2,2 = 1.

7. Conclusions

This paper has presented main characteristics and peculiarities
of MaMaS-tng, a semantic matchmaking engine in theALN
subset of OWL-DL, currently fully operational, endowed of
standard and nonmonotonic services, which allows computing
both logical rankings and explanations on match rankings.
Current work is ongoing on the design and implementation of
a novel matchmaking engine, tableu-based, inALC.
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