
An efficient data compression algorithm for semantic-based ubiquitous
computing applications

Michele Ruta
Politecnico di Bari
via Re David 200
I-70125 Bari, Italy
m.ruta@poliba.it

Tommaso Di Noia
Politecnico di Bari
via Re David 200
I-70125 Bari, Italy
t.dinoia@poliba.it

Eugenio Di Sciascio
Politecnico di Bari
via Re David 200
I-70125 Bari, Italy

disciascio@poliba.it

Floriano Scioscia
Politecnico di Bari
via Re David 200
I-70125 Bari, Italy

f.scioscia@poliba.it

Abstract

We present an efficient compression algorithm specifi-
cally devised and implemented to reduce size of document
instances expressed in various ontological languages, and
specifically targeted at DIG 1.1 syntax. Motivation de-
rives from a widespread exploitation of Knowledge Rep-
resentation formalisms in innovative ubiquitous computing
contexts. In carried out tests, the compressor we present
showed better compression rates than currently available
general-purpose XML compression tools.

1 Introduction

Technological innovation in mobile computing and com-
munication is steadily growing. Nowadays a lot of per-
sonal mobile devices (such as smartphones and PDAs)
are endowed with high processing power, extensible soft-
ware platforms and support for multiple wireless connec-
tivity. Basically, network technologies for ubiquitous com-
puting can be divided into infrastructure-based and ad-
hoc. Mobile Ad-hoc NETworks (MANETs) are character-
ized by shorter communication range, higher connection
volatility, lower data rates and energy consumption w.r.t.
infrastructure-based ones [18].

As devices become more powerful, the request for
“smarter”, more advanced applications and services arises.
In particular, context-awareness and customization accord-
ing to user preferences are highly desired features in ubiq-
uitous computing scenarios. Context consists in any im-
plicit or explicit information which can be used by a sys-
tem to automatically characterize the status of a user within
the environment [5]. Emerging ubiquitous applications aim
to disseminate knowledge into the environment surrounding
people. Such information should be automatically extracted
and processed by mobile devices, in order to better support

the current activity of a user and satisfy her needs.

Several technologies are emerging as possible means to
fill the gap between physical and digital world (for example
Radio Frequency IDentification (RFID) and Wireless sensor
networks (WSNs)).

RFID systems allow an object identification by means of
electronic transponders (tags) attached to items, which are
detected by reader devices and identified through a unique
Electronic Product Code (EPC). Worldwide industry lead-
ers and research centers, under the guide of EPCglobal con-
sortium [6], are currently engaged in a joint effort to develop
a set of technological standards for a global platform aim-
ing at the identification and tracking of commercial prod-
ucts during their entire lifecycle (manufacturing, distribu-
tion and sales).

WSNs, on the other hand, allow to monitor environmen-
tal parameters of interest. Latest WSN generations support
both queries and automatic alerts when events defined by
application criteria occur [7]. Both these technologies are
characterized by relatively large numbers of unobtrusive, in-
expensive and disposable micro-devices, disseminated in a
given environment. Due to cost and power constraints, data
transfer bandwidths and on-board memory and processing
capabilities of individual nodes are still extremely limited.

In mobile environments, users search and use ser-
vices/resources exploiting basic wireless connectivity and
elementary discovery protocols. Current discovery para-
digms are based on a “one to one” matching of resource
attributes which results largely unsuitable for advanced ap-
plications. Ideas and technologies borrowed from the Se-
mantic Web vision may allow to overcome these limita-
tions. Each available resource in the semantic-enabled Web
vision is annotated, using RDF [14], w.r.t. an OWL ontol-
ogy [19]. Both RDF and OWL are defined through XML
Schema [20]. Furthermore there is a close relationship be-
tween the OWL-DL subset of OWL and Description Logics
(DLs) [1] semantics, which allows the use of DL-based rea-

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0-7695-2993-3/07 $25.00 © 2007 IEEE
DOI

177

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0-7695-2993-3/07 $25.00 © 2007 IEEE
DOI 10.1109/UBICOMM.2007.33

177

soners in order to infer new information from the one stated
in the semantically annotated descriptions. The communi-
cation with state-of-the-art DL reasoners can be performed
via an HTTP interface developed by the Description logics
Implementation Group (DIG) [2].

A known drawback of XML formats (such as DIG) is
their verbosity. Usually it is not a concern for Internet-
based applications (because link bandwidth and host stor-
age capacity are enough for most practical purposes), but
surely reduces efficiency of data storage and communica-
tion in mobile environments. Adaptation of ideas and tech-
niques from the Semantic Web vision to ubiquitous scenar-
ios requires to cope with the limited storage and compu-
tational capabilities of mobile and embedded devices and
with reduced bandwidth provided by wireless links. From
this point of view, the first issue is in downscaling the large
amount of transiting data. Compression techniques become
essential in order to enable storage and transmission of se-
mantically annotated information on tiny mobile devices
such as RFID tags or wireless sensors. Moreover, the bene-
fits of compression will apply to the whole ubiquitous com-
puting environment, as decreasing data size means shorter
communication delays, efficient usage of bandwidth and re-
duced battery drain for mobile devices in a MANET.

In this paper, we present a novel efficient XML com-
pression algorithm. It is currently targeted at DIG 1.1 doc-
ument instances: structural elements of the XML Schema
for DIG formalism have been encoded in a compact way. In
our tests, better compression rates have been achieved w.r.t.
currently available general-purpose and XML-specific com-
pressors.

The remaining of the paper is organized as follows. Sec-
tion 2 illustrates motivation of the approach. In Section 3 we
comment on relevant related work. The proposed compres-
sion algorithm is described in Section 4. Section 5 reports
a performance evaluation. Conclusions and future work are
outlined in Section 6.

2 Framework and Motivation

In [15] a framework for resource discovery in Bluetooth-
based MANETs was proposed, exploiting ontology-based
Knowledge Representation techniques. A –backward
compatile– micro-layer of semantic capabilities was inte-
grated into Bluetooth Service Discovery Protocol (SDP).
This approach allows to exploit semantic-enhanced discov-
ery techniques to support approximate matches. A similar
vision can be projected onto objects populating the world
surrounding us, as devised in [17]. By extending the above-
mentioned technologies to support storage and transmis-
sion of descriptions expressed in suitable Knowledge Rep-
resentation (KR) formalisms, everyday objects could auto-
matically expose relevant information about themselves to

SHOP 1

SHOP 2

e-shop

e-shop

hotspot

middleware

RFID tag

RFID reader

Semantic-enhanced
EPCglobal Semantic-enhanced

Bluetooth

Figure 1. Semantic-based object discovery
framework

nearby mobile devices. In this manner a fully integrated
context representation could be enabled.

In a companion paper presented at this same venue [16]
the above vision has been expanded in order to enable object
discovery capabilities through semantic-enhanced RFID for
m-commerce purposes. Backward-compatible extension to
EPCglobal specifications for tag standards and data ex-
change protocol has been devised and designed. Further-
more, a prototypical system has been implemented, oriented
to ubiquitous commerce scenarios. Its basic structure is de-
picted in Figure 1 and briefly summarized in what follows.
An object can expose its semantic annotation, stored in the
RFID tag it is associated with. In a mobile marketplace
context, when a user picks an item, the choice is detected
and considered as an implicit request to interact with the
system. A RFID reader scanning the description of the se-
lected good thus enables a discovery phase to find further
resources, either similar or to be combined with the selected
one. Semantic based Bluetooth SDP and non standard in-
ference services are exploited to discover and return the best
matching resources within the marketplace.

During the implementation and evaluation of the above
framework, we noticed DIG syntax is more compact than
OWL [17], but experimental results and technological evi-
dence show it is still too verbose for a significant applica-
tion in ubiquitous computing. If we want to really induce an
unobtrusive decentralization of ontology-based mobile sys-
tems for making them really pervasive, annotations have to
be compacted and unpacked in an efficient and reliable fash-
ion. In this way, metadata about smart objects (i.e., wireless
sensors, tagged goods, embedded micro-devices) can carry
a description about provided features and managed func-
tionalities and no concentrated knowledge/data bases are
required. In those cases a strategy to compress semantic
annotations is definitely required.

Also ontologies expressed in DIG syntax can benefit
from a compact encoding. It decreases both data occu-
pancy as well as data transfer –and thus time and power
consumption– in communication sessions between a rea-
soner and a client agent. This can be particularly useful
for mobile scenarios, but also for applications originally de-

178178

vised for wired networks.

3 Related Work

gzip [8] (along with its library version zlib [22]) is a
very popular universal compression tool. It is based on a
variant of the LZ77 Ziv-Lempel algorithm [21]. It basi-
cally searches for string sequences recurring at least one
time within the file to be compressed. Furthermore it substi-
tutes the second occurrence with the pair: distance (in byte)
from the first exemplar of the sequence and length of the
sequence itself.

XMill [12] is an efficient general purpose XML com-
pressor. Its approach is based upon the separation of XML
content into different containers, which are stored sequen-
tially in the output file. The first container is always used for
encoding document structure. Another one lists XML tag
and attribute names and is compressed using zlib. For each
XML tag type in the source document, one more container
is created. Each of these data containers is compressed by
a specialized module. XMill provides optimized compres-
sion modules for several basic data types (such as text, in-
tegers and dates), as well as an API to add custom modules
for application-specific data types. XMill performances are
better than generic compressors for medium and large XML
documents. For small files (up to 20 KB approximately),
however, tests showed lower compression rates than generic
algorithms such as gzip. Since each container is compressed
separately, in those cases efficiency of compression algo-
rithms is penalized by the small size of containers. For our
intended applications, it is important to achieve high com-
pression rates even for short documents as DIG annotations
stored within tagged objects, sensors or micro-devices. A
different approach w.r.t. the one of XMill is therefore re-
quired. Flash XML Compressor is another example of
XML-specific encoding tool: its compression rates, how-
ever, are much lower than XMill and practically inadequate
to the purposes stated in Section 2.

In [10] a syntactic approach is pursued. A DTD or XML
Schema is treated as a Dictionary Grammar, which is a vari-
ant of a Context Free Grammar. A parser generator was de-
veloped, that builds a parser for the DTD or XML Schema
of the document to be compressed. The XML document
is then parsed and symbols are encoded using partial pre-
diction matching (PPM), an adaptive coding technique [3].
Authors showed that grammar-driven PPM is more efficient
than other PPM-based XML encoding techniques. Com-
pression rates are higher than XMill, though PPM-based
compressors are generally slower. A further advantage of
that approach is in allowing the compression of XML data
streams. That feature can be useful in network applications.
Unfortunately we could not compare proposed algorithm
with that tool, since it is not publicly available. The XML

corpus used in [10] for benchmarking does not contain doc-
uments in DIG formalism.

4 Algorithm details

The proposed compression algorithm is specifically ori-
ented to the packing of the novel standard DIG 1.1 format
[2]. Each XML file has a specific DTD. In particular a DIG
format can together contain 40 tags at most. A DIG doc-
ument is an XML document exposing specific characteris-
tics. That is, no value is set for any tag; the value of tag
attributes is within a well defined finite set of values. An
example of DIG syntax is reported in Figure 2a.

A basic distinction among various encoding techniques
is in fixed length and variable length algorithms [9]. In the
first case, having a specified alphabet, a fixed bit number is
used to code each symbol: in particular we need n = log2k
bits, if alphabet has k symbols. A DIG file is coded by
means of ISO 8859-1 or UTF-8 encoding. In particular
each allowed character can be associated to 1 byte (special
characters needing more than 1 byte in UTF-8 do not be-
long to the symbol set of a DIG). Hence, in order to ob-
tain a good compression rate, we must recur to a variable
length coding algorithm: in this case the most efficient al-
gorithm is the Huffman one [11, 4]. It requires to have
a list containing the correspondences between each sym-
bol and the corresponding bit sequence. The list obviously
varies according to the document. Although Huffman al-
gorithm could appear a good choice to compress an ontol-
ogy in DIG syntax, it does not work well with short seman-
tically annotated DIG descriptions as the ones referred to
resource metadata annotation. Basically a resource descrip-
tion is usually few hundred bytes long and then the Huffman
compression is sometimes inadequate because a description
could be smaller than the decode list itself.

We propose a different and simple DIG compression so-
lution particularly suitable for pervasive applications whose
structure is shown in Figure 3. Three fundamental phases
can be identified: (1) data structures packing; (2) attribute
values packing; (3) zlib packing. We exploit the peculiarity
of the DIG format having few, well defined and limited tag
elements. A typical DIG file is mostly composed of empty
XML elements.

(1) Data structures packing. The proposed compression
algorithm is based on two fundamental principles. First of
all, pure data have to be divided from data structures; fur-
thermore data and data structures have to be separately en-
coded in order to obtain a more effective compression rate.
Data structures are basically XML elements with possible
related attributes whereas data simply are attribute values.
Recall that data structures in DIG syntax are fixed and well
defined by means of the DIG XML Schema, whereas data
are different from document to document. XML elements

179179

<?xml version="1.0" encoding="UTF-8"?>
<tells xmlns="http://dl.kr.org/dig/2003/02/lang">

<defindividual name="dual_display_phone"/>
<instanceof>

<individual name="dual_display_phone"/>
<and>

<catom name="mobile_phone"/>
<atleast num="2">

<ratom name="has_display"/>
<top/>

</atleast>
<atmost num="2">

<ratom name="has_display"/>
<top/>

</atmost>
<all>

<ratom name="has_display"/>
<catom name="color_display"/>

</all>
<some>

<ratom name="has_display"/>
<catom name="QCIF_LCD_display"/>

</some>
<some>

<ratom name="has_display"/>
<catom name="QVGA_LCD_display"/>

</some>
</and>

</instanceof>
</tells>

(a) Original document (791 B)
be cb dual_display_phone
b5 c6 mobile_phone
c1 2 cc has_display
a8 c2 2 cc has_display
c4 a9 b6 cc has_display
c6 color_display
a7 c0 cc has_display
c6 QCIF_LCD_display
b2 c0 cc has_display
c6 QVGA_LCD_display
b2 a6 b0 b3

has_display ff fe
be cb dual_display_phone
b5 c6 mobile_phone
c1 2 cc 01
a8 c2 2 cc 01
c4 a9 b6 cc 01
c6 color_display
a7 c0 cc 01
c6 QCIF_LCD_display
b2 c0 cc 01
c6 QVGA_LCD_display
b2 a6 b0 b3

(b) Stage 1 result (178 B) (c) Stage 2 result (143 B)

Figure 2. Example of DIG document at differ-
ent stages of the proposed algorithm

are coded by associating an unambiguous 8-bit code to each
structure in a static fashion. Consider that DIG files adopt
an encoding which exploits 1 byte for each character: so
an early size saving is performed. The association between
XML structures and corresponding code is fixed and invari-
able. This is a further benefit because it is not necessary to
integrate within the compressed file a header which contains
the decoding table as in the general purpose XML compres-
sors. Figure 2b shows the output of this compression step
for the example DIG document (for a better readability, byte
encoding data structures are reported in hexadecimal nota-
tion and whitespace has been added by hand)

(2) Attribute-values packing. In order to pack the at-
tribute values, in the proposed approach a further phase is
introduced. Most recurrent words are identified in the previ-
ously distinguished data section. They will be encoded with
a 16-bit sequence. This second compression stage allows to
obtain a further size saving –especially in ontologies– for
concepts and roles particularly recurrent. The second pack-
ing phase needs to build and maintain a header of the com-
pressed file containing correspondences between each text
string and the related 16-bit code. It is dynamically cre-
ated and exclusively belongs to a specific DIG document
instance. The provided header will be exploited in the de-
compression steps. Notice that assigned codes differ be-

Data-structures
packing

Data-structures
packing

Attribute values
packing

Attribute values
packing zlibzlib

DIG XML Schema
DIG XML Schema Recurrence checkRecurrence check Ziv-Lempel algorithmZiv-Lempel algorithm

H
E

A
D

E
R

H
E

A
D

E
R

Correspondence
list

Correspondence
list

Figure 3. Structure of the proposed DIG com-
pression tool

tween them for the second byte because the first octet is
adopted as padding in order to distinguish the attribute value
coding from the ASCII one. The use of this header could
compromise compression performances for short files: re-
call that the size consumption for the header reduces sav-
ing obtained with compression. Hence the encoding of all
the string values of a DIG file without any a priori distinc-
tion has to be definitely avoided. Care has to be paid in
choosing attribute-value strings to encode. A correct com-
pression procedure should properly take into account two
variables. First of all the length of an attribute string and
furthermore its number of occurrences within the file. The
minimum length of strings to encode can be trivially estab-
lished by comparing the size consumption needed to store
correspondences string–code and the saving obtained with
the encoding: in the proposed approach only text attributes
with a length of at least three characters will be encoded.
Furthermore, in order to establish what attribute values
(among remaining ones) have to be coded, we must evalu-
ate the number of occurrences of each attribute i (from now
on nr occurencesi). We fix a minimum optimum value
nr occurences min and we will encode only i attribute
values where nr occurencesi > nr occurences min. We
have performed statistical evaluations trying the compres-
sion of 72 sample ontologies and evaluating obtained com-
pression rate varying nr occurences min. The best com-
pression rates were produced by nr occurences min val-
ues within the range [2-8], with an average of 4.03 and a
standard deviation in the range [0-0.3]. In the proposed ap-
proach we set nr occurences min = 4, so we will en-
code only attribute strings with at least three characters
recurring at least four times. In the example document,
has display is the only attrbitue value encoded in the
file header, as shown in Figure 2c (ffh delimits header en-
tries, while feh marks the end of header).

(3) zlib packing. The third and final compression step
exploits the zlib library. Words not encoded will be suc-
cessively coded by means of the Huffman algorithm [11].
Although the zlib algorithm does not work particularly well
when it has to compress a partially encoded input (it is dif-
ficult to find more occurrences of the same character se-

180180

80,00%

85,00%

90,00%

95,00%

100,00%

s: DIG file size (KB)

A
ve

ra
g
e

co
m

p
re

ss
io

n

Avg. Rate 87,05% 91,39% 92,65% 94,53% 96,32%

Std. Dev. 2,80% 1,13% 1,99% 1,21% 1,14%

s < 2 (13
samples)

2 < s < 4 (12
samples)

4 < s < 8 (15
samples)

8 < s < 32 (15
samples)

s > 32 (15
samples)

Figure 4. Obtained compression rates

quence), the use of zlib in our approach resulted however
useful especially for large files, where it produces the com-
pression of words excluded by the previous steps and of the
file header.

5 Performance Evaluation

Performance evaluation of the proposed algorithm has
been carried out estimating three fundamental parameters:
(1) compression rate, (2) turnaround time, (3) memory us-
age. Two tools were developed in C language implement-
ing our compression and decompression algorithms. They
were named DIG Compressor and DIG Decompressor, re-
spectively. Currently, Windows and Linux platforms are
supported, leveraging the freely available zlib compression
library. Tests for compression rate and running time were
performed using: (1) a PC equipped with a Intel Pentium
4 CPU (3.06 GHz clock frequency), 512 MB RAM at 266
MHz and Windows XP operating system; (2) a PC running
Gentoo GNU/Linux with 2.6.19 kernel version and Valgrind
[13] profiling toolkit. This second PC was equipped with
a Pentium M CPU (2.00 GHz clock frequency) and 1 GB
RAM at 533 MHz.

Firstly, compression rates achieved by the proposed al-
gorithm were considered, in order to assess whether our
approach is adequate to the purposes outlined above. The
framework was tested with 70 DIG documents of various
size. Our aim was to evaluate compression rates for both
smaller instance descriptions and larger ontologies. Fig-
ure 4 shows average compression rates and standard devi-
ations for different size ranges of DIG input data. Over-
all average compression rate is 92.58 ± 3.58%. As ex-
pected, higher compression rates were achieved for larger
documents. Even for very short DIG files (less than 2 KB),
however, average compression rate is 87.05±2.80%, which
is surely satisfactory for our purposes.

A comparative evaluation was carried out using the gen-
eral purpose XML compressor XMill [12] and gzip [8]
generic compressor as benchmarks. Testing the compres-
sion rate, the proposed system allowed to obtain smallest

70,0%

75,0%

80,0%

85,0%

90,0%

95,0%

100,0%

Original DIG file size (byte)

C
o
m

p
re

ss
io

n
 r
at

e

gzip 76,9% 81,2% 82,6% 87,6% 92,9% 94,3% 91,7%

XMill 75,2% 80,7% 82,0% 88,9% 95,0% 96,4% 94,9%

DIG Compressor 87,5% 89,2% 89,2% 92,5% 95,5% 96,5% 94,9%

instance1 instance2 instance3 ontology1 ontology2 ontology3 ontology4

2035 3445 4079 12801 66247 111384 190685

Figure 5. Performance comparison – Com-
pression rate

0

50

100

150

200

250

300

350

Original DIG file size (byte)

A
ve

ra
g

e
tu

rn
ar

o
u

n
d

 ti
m

e
(m

s)

gzip 20 20 20 21 23 30 50

XMill 20 20 29 36 60 70 50

DIG Compressor 29 31 40 50 89 149 290

instance1 instance2 instance3 ontology1 ontology2 ontology3 ontology4

2035 3445 4079 12801 66247 111384 190685

Figure 6. Performance comparison – Turn-
around time

resulting files, as shown in Figure 5. For each DIG file,
original size (in bytes) is reported. Our algorithm performed
significantly better for small DIG documents. This result is
very encouraging, since in our mobile scenarios we usually
deal with short XML annotations of available resources.

In order to evaluate turnaround time, each test was run 10
times consecutively, and the average of the last 8 runs was
taken. Results are presented in Figure 6. It can be noted that
DIG Compressor has higher turnaround times than other
tools, though absolute values are still quite acceptable. Such
an outcome suggests we should put further work into opti-
mizing our implementation for execution speed.

Finally, memory usage analysis was performed using
Massif tool of Valgrind debugging and profiling toolkit.
Massif measures stack and heap memory profile throughout
the life of a process. For our comparison, only the mem-
ory occupancy peak was considered. Results are reported
in Table 5. DIG Compressor memory usage is only slightly
higher than the one of gzip, with high correlation (r = 0.96)

181181

Table 1. Performance comparison – Memory
usage peak (kB)

DIG document Original size (B) gzip XMill DigCompressor

Playstation 2 Slim.dig 2035 220 2700 290
Kodak P880 camera.dig 3445 200 4500 250
Asus A3FP Notebook.dig 4079 200 6500 250
toy ontology.dig 12801 200 4000 240
rent ontology.dig 66247 200 6500 250
clothing ontology.dig 111384 202 4500 250
electronic products ontology.dig 190685 210 4000 260

between the two value sets. This result could be expected,
since our algorithm relies on Ziv-Lempel compression in
its last phase. On the contrary, XMill showed a more erratic
behavior. Outcomes can be reputed as encouraging because
memory-efficient implementations of zlib library are cur-
rently available for all major mobile platforms.

6 Conclusion and Future Work

We have devised, implemented and tested a compres-
sion algorithm for XML documents in DIG syntax. The
study is motivated by the need for better adapting Seman-
tic Web technologies to pervasive environments. Our DIG
compressor tool showed high efficiency in terms of com-
pression rates and computational requirements. DIG data
compression can speed up communications among nodes
both for wired and wireless networks. Implemented tool
results suitable for mobile applications, since it achieves
high compression rates even for short DIG annotations of
resource instance descriptions. With respect to XMill XML
compressor and gzip generic compressor, our tool showed
the highest compression rate in all performed tests. Process-
ing times were comparable for documents up to 80 kB. Fu-
ture work comprises porting the compression tool to mobile
platforms. Java-enabled phones and Linux-based wireless
PDAs are the main targets. Evaluation of time and memory
requirements on mobile devices is important to assess the
feasibility of our approach. A further goal is to extend our
solution to a broader range of XML documents. This may
be achieved by dynamically adapting our algorithm to the
DTD or XML Schema of the document to be compressed.
Moreover, by applying the same procedure when decom-
pressing, the original document could be restored with no
information loss. It would be particularly useful to effi-
ciently encode other widespread DL-based formalisms such
as OWL, which are even more verbose than DIG. A pre-
liminary investigation is currently being performed in this
direction.

References

[1] F. Baader, I. Horrocks, and U. Sattler. Description Logics as
Ontology Languages for the Semantic Web. Lecture Notes

in Artificial Intelligence, Springer, 2003.
[2] S. Bechhofer, R. Möller, and P. Crowther. The DIG Descrip-

tion Logic Interface. In Proceedings of the 16th Interna-
tional Workshop on Description Logics (DL’03), volume 81
of CEUR Workshop Proceedings, September 2003.

[3] J. Cleary and I. Witten. Data Compression Using Adaptive
Coding and Partial String Matching. IEEE Transactions on
Communications, 32(4):396–402, April 1984.

[4] T. Cover and J. Thomas. Elements of Information Theory.
John Wiley and Sons, Inc., New York, 1991.

[5] A. Dey. Providing Architectural Support for Building
Context-Aware Applications. PhD thesis, Georgia Institute
of Technology, 2000.

[6] EPCglobal. http://www.epcglobalinc.org.
[7] D. Graanin, W. Eltoweissy, A. Wadaa, and L. DaSilva. A

service-centric model for wireless sensor networks. IEEE
Journal on Selected Areas in Communications, 23(6):1159–
1166, June 2005.

[8] GZIP compression utility. http://www.gzip.org/.
[9] R. Hamming. Coding and Information Theory. Prentice

Hall, 1986.
[10] S. Harrusi, A. Averbuch, and A. Yehudai. XML syntax

conscious compression. In Data Compression Conference
(DCC2006), March 2006.

[11] D. Huffman. A method for the Construction of Minimum
Redundancy Codes. In IRE, pages 1098–1101, September
1952.

[12] H. Liefke and D. Suciu. Xmill: an efficient compressor for
xml data. SIGMOD Rec., 29(2):153–164, 2000.

[13] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Confer-
ence on Programming Language Design and Implementa-
tion - PLDI 07. ACM SIGPLAN, June 2007.

[14] RDF Primer-W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer/.

[15] M. Ruta, T. Di Noia, E. Di Sciascio, and F. Donini.
Semantic-Enhanced Bluetooth Discovery Protocol for M-
Commerce Applications. International Journal of Web and
Grid Services, 2(4):424–452, 2006.

[16] M. Ruta, T. Di Noia, E. Di Sciascio, and F. Scioscia. In-
tegrating Radio Frequency Object Discovery and Bluetooth
for Semantic-based M–commerce. In International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services
and Technologies (UBICOMM 2007), 2007. To appear.

[17] M. Ruta, T. D. Noia, E. D. Sciascio, and F. Scios-
cia. If Objects Could Talk: Semantic-enhanced Radio-
Frequency IDentification. In The First International Work-
shop on RFID Technology Concepts, Applications, Chal-
lenges (IWRT 2007), pages 25–34. INSTICC Press, 2007.

[18] C. Toh. Maximum battery life routing to support ubiqui-
tous mobile computing in wireless ad hoc networks. IEEE
Communications Magazine, 39(6):138–147, June 2001.

[19] W3C Recommendation. OWL Web Ontology Language.
www.w3.org/TR/owl-features/, 2004.

[20] XML Schema. http://www.w3.org/XML/Schema.
[21] J. Ziv and A. Lempel. A universal algorithm for sequential

data compression. IEEE Transactions on Information The-
ory, 23(3):337–343, 1977.

[22] ZLIB Library. http://www.zlib.net.

182182

