
m-jUDDI+: a Semantic-enabled Service Registry
for Discovery, Composition and Substitution in

Pervasive Environments

Michele Ruta1, Tommaso Di Noia1, Eugenio Di Sciascio1, and Francesco Maria
Donini2

1 Politecnico di Bari, via Re David 200, I-70125 Bari, Italy,
[m.ruta, t.dinoia, disciascio]@poliba.it

2 Università della Tuscia, via San Carlo 32, I-01100 Viterbo, Italy,
donini@unitus.it

Abstract. We present a semantic-based version of UDDI registry, specif-
ically devised for pervasive environments, able to cope with automated
mobile service discovery and composition and compliant with Semantic
Web technologies. The framework exploits non-standard inference ser-
vices within OWL-S. The approach also deals with effect duplication
and non-exact matches, computing an approximate covering result. A
simple technique is also presented to implement a dynamic substitution
of services/resources failed or no longer available, especially useful in
highly unpredictable frameworks. The proposed approach has been im-
plemented and tested in an ubiquitous computing environment.

1 Introduction

This paper presents a novel framework for service discovery, composition and
substitution in a Mobile Ad-hoc NETwork (MANET) environment. Knowledge
Representation techniques and approaches are exploited and adapted to highly
flexible and volatile ubiquitous computing frameworks. In particular, we intro-
duce m-jUDDI+, an extended version of the open source jUDDI [1] implemen-
tation by the Apache Software Foundation. m-jUDDI+ is the mobile version of
jUDDI+ [2], and it adopts an OWL-S 1.1 Profile instance [3] annotation of mobile
services. Ontology-based metadata are exploited in order to perform a semantic-
based discovery of a single service as well as a semantic-based composition w.r.t.
a given request. We also implement a dynamic substitution of failed or no longer
available services.

W.r.t. general purpose semantic-based service composers, the approach im-
plemented in m-jUDDI+ goes beyond the “simple” discovery of subsumption re-
lations between preconditions and effects (or inputs and outputs) of a service
components sequence, but it is also able to cope with: (1) non-exact matches
and (2) effects duplication.

(1) If it is not possible to compute a sequence of mobile service components
satisfying the whole user request, the best approximate solution is given based on

2

the request. An explanation of what is still uncovered by the computed composite
service is also provided, as complementary result of the composition process.

(2) In order to execute a mobile service, its preconditions (inputs) must be
satisfied, possibly using information provided by other services within the flow.
Moreover care has to be paid in avoiding the duplication of effects (outputs)
when composing services, which might be also due to entailment relationships
among different effects provided by services being composed (see later on for
further details). After the execution of the composite service we do not want
two or more services providing the same features, even partially overlapping.

The proposed approach has been targeted to pervasive environments exploit-
ing an m-DBMS, i.e., Oracle 10g Lite [4] to implement a mobile registry able to
cope with semantically annotated OWL-S resource discovery and composition.
In what follows both implementation details as well as experimental results are
presented.

The remaining of the paper is organized as follows. Section 2 presents a
greedy algorithm based for automated mobile service composition. The substi-
tutability approach is described in Section 2.2. Section 3 reports a sketch of the
proposed architecture whereas Section 4 describes the prototype implementing
the approach, its integration in the OWL-S 1.1 framework, and outlines obtained
experimental results. Section 5 closes the paper.

2 Mobile Service Discovery, Composition and
Substitution

An ad-hoc network is a system in rapid evolution, providing services and/or ex-
posing resources. A generic requester may generally ignore the network structure
as well as available services. Hence discovery protocols allow to identify consis-
tence and location of services. Nevertheless current service discovery paradigms
are usually based on syntactic matching of attributes, which are largely inade-
quate for advanced mobile applications. Users need to submit articulate requests
and to receive appropriate replies [5]. Semantics allows to overcome these lim-
itations, but several issues have to be solved in order to adapt both ideas and
technologies devised for the WWW to unpredictable environments like mobile
ad-hoc ones. The backward-compatible semantic-based Bluetooth SDP proposed
in [6] allows the management of both syntactic and semantic discovery of services
and resources, by integrating a semantic layer within the protocol stack at appli-
cation level. Unused classes of 128 bit service identifiers in the original Bluetooth
(UUIDs) are exploited to label specific ontologies, naming this value OUUID
(Ontology Universally Unique IDentifier). By means of the OUUID matching
between request and available resources the context can be determined and a
preliminary selection of resources referring to the same ontology of the request
performed. A general description of each resource of the environment can then
be stored within a mobile device as a database record labeled with a unique
32-bit handle. Each record entirely consists of an OUUID, a human-readable
name for the resource, a resource description expressed in OWL-S syntax and

3

a variable number of utility attributes (i.e., numerical values used according to
specific applications). By adding four Service Discovery Protocol PDUs to the
original standard (exploiting not used PDU IDs), further semantic-enabled dis-
covery functionalities have been introduced, without limiting the original SDP
capabilities. The overall interaction is based on the original application layer in
Bluetooth. No modifications were made to the original structure of transactions.

When it comes to orchestration of discovered elementary resource compo-
nents in order to give in output a complex service to the user, serviceComposer
algorithm plays a central role. It accepts in input, among other things, precon-
ditions that must be satisfied, providing in output the composite mobile service
best matching the user requests.

2.1 Composition of Mobile Services

Here we present the general framework for a semantic-based automated com-
position of mobile services. Let us suppose a generic client submits a request
for a service in an ad-hoc network. We basically hypothesize a requester-centric
composition system. The requester searches for a complex service and collects
various component services coming from nearby nodes. Hence, it attempts to
cover the request starting a composition algorithm. In the proposed approach,
the requester acts as the service orchestrator and other nodes in the ad-hoc
environment assume only a passive role.

If retrieved services do not allow to completely fulfill the request, an approx-
imate solution has to be taken into account, possibly explaining the approxima-
tion, and letting the requester accept it or not. Observe that the role assumed
by the requester, which performs the composition, is fully interchangeable with
any host within the MANET so that composition is fully decentralized. Various
resource providers may take part to it. Each host concurs to cover the whole
request or part of it, by means of service descriptions it manages.

To explain and motivate the approach and the rationale behind it, we present
a simple semantic based service discovery model and we add to it service compo-
sition features, enriching the model. Hereafter, we adopt Description Logic (DL)
formalism [7], assuming the reader being familiar with it. In the initial architec-
ture we define both the request D and the description of each available service on
a mobile device, as DL concept descriptions w.r.t. an ontology T shared among
some users in the network. We perform a preliminary selection procedure based
on ontology numeric identifiers to extract devices that manage the same ontology
T . Hence, given a request D modeled w.r.t. T , in what follows we briefly outline
the service discovery algorithm computed by the service requester to retrieve
resources possibly satisfying her request:

1. Extract service descriptions in the requester cache.
2. Select all the resource descriptions which refer to the same T .
3. Put all the retrieved descriptions in a set R.
4. Call resource composition algorithm with input R, D and T .
5. Is there an exact solution?

4

(a) If yes, the algorithm outputs the set of services representing the exact solution
to the composition. Exit.

(b) If not, the algorithm outputs the set of services representing an approximate
solution to the composition and an explanation on why the solution is not an
exact one. Exit.

The composition of discovered services in the MANET requires to take into
account also their execution information, i.e., inputs, outputs, precondition and
effect specifications. In fact some services may set specific execution requisites
to be satisfied. Here if a mobile device does not manage them, it cannot use
the service. Without loss of generality, in what follows we will consider only
preconditions and effects, as it is straightforward to extend the approach also
considering inputs and outputs. Now we briefly explain precondition and effects
function in the orchestration of mobile services and we show how to compose
services. In order to use a service on a mobile device, its preconditions must be
satisfied and, if the service is a component of a service set, this has to be done
possibly using information provided by other component services. Moreover,
when composing services, a duplication of effects can take place. Here we extend
the service composition model in [2] to deal with a pervasive scenario. For the
sake of clarity we only recall main terms and definitions. In particular we define:

Mobile Service: a triple 〈MSD,P,E〉 where MSD is the description of
provided service, P its preconditions and E the effects. Furthermore, indicating
with AIi the available information for the i-th mobile service msi and with Ej

the effects produced by msj , with j < i, the following relation ensues: AIi =
P0 u E1 u E2 u ... u Ei−1.ms1ms1 EffectsEffectsPreconditionsPreconditionsP0P0

AIi= ♥,♣AIi= ♥,♣ AIi+1= ♥, ♣, ♦,,♠AIi+1= ♥, ♣, ♦,,♠

…ms2ms2 EffectsEffectsPreconditionsPreconditions msNmsN EffectsEffectsPreconditionsPreconditionsAI1AI1 AI2AI2 AIiAIi AIi+1AIi+1 … AIN-1AIN-1msi EffectsPreconditions
msimsi

Ei = ♦
,♠

Ei = ♦
,♠

Pi =
 ♣

Pi =
 ♣

Fig. 1. A composition framework scheme

Based on the definition of mobile service flow w.r.t. some initial preconditions
P0 –from now on MSF(P0) [2]– here we define a composite mobile service
w.r.t. a request D. A composite mobile service for 〈D, P0〉 w.r.t. the set
of discovered mobile services R, from now on CMS(〈D, P0,R〉), is a mobile

5

service flow such that for each msj in the execution flow: DCMS(〈D,P0,R〉) =
{MSD(j)|msj ∈ CMS(〈D, P0,R〉)} covers D.

An executable mobile service msex for MSF(P0) is a mobile service
which can be invoked after the execution of MSF(P0), i.e., its preconditions
are satisfied after the execution of MSF(P0), and such that its effects are not
already provided by MSF(P0).

The serviceComposer algorithm outputs the resulting CMS as well as Duncovered.
If a requester, with the evolution of the MANET, receives descriptions of new
services belonging to other far service providers in the network, it can run again
the composition algorithm and can try to better cover the request.

Notice that in a mobile scenario the discovery and composition of services is
performed by an association of nodes which take part to the final result. Due to
the volatility of such a context, the set of discovered services available for the
further orchestration is variable and in evolution. Hence, the composing algo-
rithm should be run in subsequent and coordinate sessions. w.r.t. Web services
composition on wired systems [2], in this case we have more subsequent com-
position processes. The orchestration goes through several steps, producing a
progressive refinement of results.

Algorithm serviceComposer(R, 〈D, P0〉, T)

input a set of services R = {msi = 〈MSD(i), Pi, Ei〉}, a
request 〈D, P0〉 - where D and MSD(i) are satisfiable in T -
output 〈CMS, H〉

1 begin algorithm
2 CMS(〈D, P0,R〉) = ∅;
3 Duncovered = D;
4 Hmin = D;
5 do
6 compute EXCMS(〈D,P0,R〉);
7 MSDmin = >;
8 for each msi ∈ EXCMS(〈D,P0,R〉)
9 if DCMS(〈D,P0,R〉) ∪ {MSD(i)} covers Duncovered then
10 H = solveCAP (〈L, MSD(i), Duncovered, T 〉);
11 if H ≺ Hmin then
12 MSDmin = MSD(i);
13 Hmin = H;
14 end if
15 end if
16 end for each
17 if MSDmin 6≡ > then
18 R = R\{msi};
19 CMS(〈D, P0,R〉) = (CMS(〈D, P0,R〉), msi);
20 Duncovered = Hmin;
21 end if
22 while(MSDmin 6≡ >);
23 return 〈CMS(〈D, P0,R〉), Duncovered〉;
24 end algorithm

Furthermore, in case of pervasive environments, the composition algorithm
has to take into account the influence of distance between offered and requested
service. In fact the set of components services is not assigned a priori, but it
may change according to network characteristics. In spite of increasing covering
possibilities, the involvement of nodes farther and farther in the MANET implies
a greater risk in the persistence of links among requester and set of providers.

6

Hence it is useful to define a metric which takes into account distance (in terms
of number of hops) from service requester to service providers for weighting the
matching degree. Services which are “located” on mobile devices in proximity
of requester have the maximum weight and this weight progressively reduces
with distance. A logarithmic function is adopted. In fact it presents a growth
approximately proportional to the distance for a short number of hops, but
assumes values almost constant over a specified limit.

In line 11 of the algorithm we correct the “semantic distance” from offered
service to request by computing the influence of “physical distance” from the
requester. A (1 + log10n) factor –where n is the number of hops from requester
to provider– is introduced. Services at one hop of distance, i.e., in the radio
range of requester, have a semantic distance determined by their real semantic
similarity w.r.t. the request. Instead, for services at two or more hops of distance,
the semantic distance is increased of a logarithmic factor. Notice that distances
over 10 hops substantially double the semantic distance. Nevertheless, if there
is an exact match the influence of physical distance is absent. This means that,
in the presence of a possible exactly matching service, we accept to tolerate the
overload and the risk of using far resources.

2.2 Service Substitutability

During the discovery phase, all services composing a set should be identified.
Nevertheless, in a pervasive environment, rarely all of them can be assumed to
be simultaneously available. In fact, during the execution, a service could fail and,
dut to host mobility, it could become unreachable. Furthermore, since a MANET
is an extremely evanescent system, while the composition is in progress, a better
resource could be detected as well as newer releases of an already discovered
service could be made available. In these cases, in a dynamic fashion, the system
should substitute mobile services no more suitable with better ones.

To implement the substitution capability we define a Similarity Group as a
collection of component services which can be substituted with each other [8].
Now the classification of a servce to determine its belonging to the group is the
central question. A set of rules for substitution of a mobile service with another
one has to be defined [9].

Notice that the Similarity Group (from now on SG) is a simple set of services
without any order relation. This is strictly correlated to the variable structure
of a MANET. So it is unnecessary to order the class of substitutable services
because they are too instable. The only reasonable order relation should be
based on the proximity among resources, but due to the host mobility it is
inapplicable to the SG. Also notice that a SG is created w.r.t. each service in
the CMS(〈D, P0,R〉) so each constituent service can have a set of substitutes.

To build the SG, information about candidate substitutes are required prior
to admit them in the substitutability class [10]. Furthermore we need some data
about the interface of a service, i.e., required preconditions and provided effects;
this is essential for evaluating its correct insertion in the MSF(P0). In order to
decide if a generic service can belong to a Similarity Group two conditions about

7

preconditions and effects have to be verified. Let us suppose (ms1,ms2, ...,msN)
are services in a CMS(〈D,P0,R〉) and let us imagine we want to constitute the
msi similarity group SG(i). We say mssub

j (j = 1...L) ∈ SG(i) iff the following
conditions hold:

1. mssub
j is an executable mobile service for (ms1, ms2, ..., msi−1)

2. for h = i + 1...N , msh is an executable mobile service for (ms1, ms2, ..., msh−1)

This is the theoretical framework but, in practice, the substitutability is im-
plemented in a more compact way. In fact, to verify if a substitute service mssub

j

is suitable, we take into account the already available AIi (if msi is the service to
substitute) and we recalculate next AIk (with k = i + 1...N) checking the satis-
fiability of the respective msk. In other words if AIi is the available information
for msi and if we want to substitute the same msi, the new AI ′i+1 = AIi uEsub

j

has to be determined. Hence it will be used for checking the satisfiability of
the next msi+1 and so on. If one of these checks fails, we can conclude that
the mssub

j is effectively unsuitable. In the progressive substitution of services
in a CMS(〈D,P0,R〉) it is desirable to start with first services in the flow, to
reuse the already determined AI in the next substitution steps and consequently
reduce the overhead deriving from this processing.

Hence, if the generic msi belonging to CMS(〈D,P0,R〉) suddenly turns un-
available, we can take a generic mssub

j from the SG(i) with j = 1...L and sub-
stitute it.

The Similarity Group of the service msi is created at discovery phase, but it
is more and more enriched while the discovery progresses, that is new services are
discovered extending to the next hop the search. Hence, if SGk(i) is the Similarity
Group of the service msi at hop k, we can say finally SG(i) = SG1(i)∪SG2(i)∪
... ∪ SGMAXhop(i).

In addition to the fault tolerance feature, the substitutability can also be
used as load balancing of services in case of high services concentration on a
single device or group of devices.

3 Basic Architecture

The testbed prototype we implemented is an evolution of traditional service
discovery architectures (Figure 2). It enables a fully decentralized approach to
discovery and composition of mobile services.

m-jUDDI+, plays a fundamental role within the whole architecture. It copes
with OWL-S based annotation of mobile services. The implementation allowed
to validate the approach, test algorithms behavior, and carry out experiments.
We model each service specification as an OWL-S 1.1 Profile instance. In order
to deal with the MSD we extended the Result class in the OWL-S 1.1 Process by
means of a new < owl : ObjectPropertyrdf : ID = ”effectsDescription”/ >.
The property has OWL-S Result class as domain and < owl : Thing/ > as
range; the cardinality is restricted to 1, because (in this initial prototype) its
specification refers to a description w.r.t. a task ontology identified by a unique

8

requester

UDDI/jUDDI DL reasoner m-jUDDI+

requester

Semantic-based Mobile Service Discovery(1)Web Services Mobile Services Mobile ServicesWeb approach
requester

Semantic-based Mobile Service Discovery(2)
Fig. 2. The service discovery evolution process

OUUID identifier. In Figure 3 modifications to the standard OWL-S 1.1 defini-
tion are reported.

In what follows we sketch the structure of the proposed architecture and
briefly outline a typical interaction. Main component of m-jUDDI+ is the Service
Selector module (SS). It performs the discovery of services, exploiting an m-
DBMS and a set of relational tables and computes a ranked list taking into
account incomplete or missing information.

Input to the system is the CMS(〈P0, E,R〉) where P0 are the initial pre-
conditions/inputs, E the desired effects/outputs after service(s) execution (i.e.,
the user requests) whereas R set is filled by services referred to the selected
ontology. In the mobile, OWL-S compliant m-jUDDI+, the composition process
is performed through the following steps:

1. User and composer (from now on hotspot) agree about the reference ontology
by means of an ontology matching procedure performed via the semantic-
enhanced Bluetooth Service Discovery Protocol (SDP) [6].

2. Exploiting the selected ontology, the user formulates a request in terms of
required preconditions and provided effects, using its OWL Classes and Prop-
erties.

3. User composes her request, which is then transmitted to the hotspot via the
semantic-enhanced Bluetooth SDP [6], together with the initial preconditions
P0 she is able to provide.

4. The hotspot selects service instances referred to the agreed ontology and
sends them to the selector SS, together with the ontology itself.

5. The semantically annotated OWL description of the request E and P0, are
sent to the SS.

6. The overall information is mapped to the appropriate set of relational tables.

9

<profile:serviceName>
Service Name

</profile:serviceName>
<profile:textDescription>

A human-understandable description of the service
</profile:textDescription>
<profile:serviceCategory>

<addParam:OUUID rdf:ID="OUUID-category">
<profile:value>

OUUID value
</profile:value>
<profile:code>

OUUID code
</profile:code>

</addParam:OUUID>
</profile:serviceCategory>
<profile:hasPrecondition>

A logic expression referring to concepts in the TP/E ontology
</profile:hasPrecondition>
<profile:hasResult>

<process:Result rdf:ID="HaveSeatResult">
<process:hasEffect>

A logic expression referring to concepts in the TP/E ontology
</process:hasEffect>
<process:effectDescription>

An OWL-DL expression referring to the concepts in the domain ontology
identified by the OUUID

</process:effectDescription>
</process:Result>

</profile:hasResult>

Fig. 3. An OWL-S mobile service Profile instance

7. The hotspot with the SS provide the CMS also computing a matching degree
and, if an approximation occurs, an explanation about the uncovered part
of the request is given. Resulting information are returned to the requester.

SS component computes the service best matching a request w.r.t. the se-
lected T so preparing components for the further composition phase. For each
ms, a check has to be performed in order to verify the compatibility between
user provided preconditions/inputs and service preconditions/inputs. In case,
the MSD is selected as a candidate to satisfy part of the request E. For each
candidate a check between provided effects/outputs and required ones has to be
done. Each compatible service/resource is ranked in order to evaluate its degree
of correspondence w.r.t. the request.

The composition process implies several calls to the SS module, i.e., the
orchestration is performed in more coordinate and subsequent sessions. In the
first one the selector attempts to identify the component service which better
covers the whole request. In case of failure, during each ensuing session it provides
the service which better deals with the uncovered part of the request. Each found
service is progressively added to the CMS and the uncovered section is updated
for the following step. Such an iteration goes on until the request is fully covered
or compatible component services are totally exploited3. What is still unfulfilled,

3 Notice that a service can be defined “compatible” with the request if it is composed
by at least one concept also present in the request annotation itself. Not compatible

10

Ontology agreementOntology agreement request replymapping

mobile hotspot

mobile host

t0 t1 t2 t4t3 tt6

Service Selector

composition

t5
ranking

Fig. 4. Service composition framework typical interaction

in case, will compose the rest H: an explanation about the approximate solution
to be provided to the user.

4 System Implementation and Experiments

A generic XML schema of an OWL-S ontology only presents subsumption rela-
tions which can be mapped into a relational database collection. The proposed
approach aims to avoid employing in pervasive frameworks computationally-
demanding reasoners. To perform discovery and composition of mobile services,
their functionalities are substituted –to some extent– with structured queries
over the DB set. Recall that the relational model implies –due to its intrinsic
structure– the possibility to establish well known relationships among generic
entities. Hence it can be correctly exploited to elicit new information starting
from the ones stated within a specific model instance. In what follows we briefly
describe the proposed E/R model featuring each component table and show
related experimental results.

– Parents 0 table is built after a parsing process involving the XML file of the
OWL-S ontology. It contains all the first degree “parent/child” relationships
also expressed by means of possible roles.

– Parents i table (i=1..N) are built expanding all the relationships of order
higher than first among concepts. Parents i is derived joining Parents i-1
and Parents 0.

services are immediately discarded and they are not inserted within the composition
flow MSF(P0).

11

– Ancestors table is given by joining all the Parent i (i=0..N) and resumes
all the subsumption relationships among concepts provided with the selected
ontology.

– Resources table collects services descriptions. Each tuple will contain a com-
ponent concept with a possible role.

– Normalized table is obtained joining Resources table and Ancestors one. It
will contain all the relationships among service instances and related parents.

The proposed model is able to cope with an elementary discovery procedure
which is the basic feature of Service Selector component described above. The
adopted algorithm is outlined hereafter. Discovery procedure receives in input
the list of concepts of the request contained in a hash-set. They are considered
individually and for each of them all the parents within the Ancestors table are
extracted. The correspondent query is:

SELECT parent

FROM Ancestors

WHERE child = <component concept>

This collection of parents will be then used for selecting from Normalized
table services that contain, in their semantic annotation, at least a concept
among them within the just created set. The related query is:

SELECT service

FROM Normalized

WHERE class IN = (<parent list>)

Retrieved services will be successively compared with the ones in the MSF
and discarded if already inserted. In case, for each candidate component service
a rank value will be computed indicating the degree of correspondence with
request. Best matching service is selected and inserted within the MSF . If no
instances result suitable for enriching the composition flow, the process is halted.
The adopted formula for the rank computation ensues:

rank = Retrieved Concepts ·
(
1− Not retrieved Concepts

Total Concepts

)

The proposed approach has been implemented and tested over a HP iPAQ
2210h PDA. Two different ontologies (not reported for brevity) have been used.
The first one (Onto 1) contains approximately 50 among concepts and roles.
The second one (Onto 2) contains approximately 100 among concepts and roles.
Correspondent KBs respectively manage 6 and 33 service instances. In what
follows we report time consumption for the bootstrap phase of the application
in both cases. Then an average time progression of discovery and composition
procedures w.r.t. consistence of request (in terms of component concept number)
is reported.

A general comparison of bootstrap phase duration against composition one
(computed in the worst case, i.e., attempting a composition over a 10 concepts

12

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

t
(s

)

 .
KB 1

OWL-S TBox parsing

Inserting data into DB

Creating Parents tables

Creating Ancestors
table

Creating Normalized
table

0

5

10

15

20

25

30

35

40

45

t
(s

)

.

KB 2

OWL-S TBox parsing

Inserting data into DB

Creating Parents tables

Creating Ancestors
table

Creating Normalized
table

Fig. 5. Bootstrap phase time consumption

KB 1

0

0,5

1

1,5

2

2,5

3

Request dim ension (nr. of concepts)

T
im

e
(s

ec
)

Discovery 0,377 0,422 0,462 0,485 0,537 0,552

Composition 0,683 0,942 1,4 2,1 2,5

1 2 3 4 5 6

KB 2

0

10

20

30

40

50

60

70

Request dim ension (nr . of concepts)

T
im

e
(s

ec
)

Discovery 11,3 11,3 11,3 11,4 11,6 11,7 12

Composition 11,7 11,7 20,7 29,8 40,4 62,3

1 2 3 4 5 6 7 8 9 10

Fig. 6. Time progression of discovery and composition process w.r.t. request dimension

13

request exploiting Onto 2) points out that the initial processing is prevailing.
Time consumption for mapping the Knowledge Base into the DB is relevant and
in particular the creation of Parents i and Normalized tables takes up most
bootstrap required time. Due to this important limitation, mapping operations
are performed only after ontology agreement and KB instantiation and are not
executed if not necessary. Anyhow the proposed system showed a better behavior
–in terms of response time– w.r.t. a traditional reasoner over a wired server. It
has been noticed that response time noteworthily decreases when battery is only
partially charged. All the carried out tests have been performed taking into
account optimal condition of the wireless device. That is the PDA had a fully
charged battery.

Time consumption comparison

4,59% 3,19%

19,12%

7,27%

26,13%

39,71%

OWL-S TBox parsing

Inserting data into DB

Creating Parents tables

Creating Ancestors table

Creating Normalized table

Composition

Time consumption comparison

0 10 20 30 40 50 60 70

OWL-S TBox parsing

Inserting data into DB

Creating Parents tables

Creating Ancestors
table

Creating Normalized
table

Composition

P
h

as
e

Time (sec)

Fig. 7. Time consumption general comparison

5 Conclusion and Future Work

Novel and powerful mobile devices call for the possibility to adopt discovery and
composition services in MANET environments. Obviously, though powerful, such
devices have specific limitations, which have to be taken into account to provide
useful results in a reasonable amount of time and keeping into account compu-
tational limits. Addressing these issues, in this paper we presented m-jUDDI+,
a semantic-based version of UDDI registry specifically devised for pervasive en-
vironments, and using a mobile-oriented DBMS, able to cope with automated
mobile service discovery and composition, compliant with OWL-S and with Se-
mantic Web technologies. The approach also deals with effect duplication and
non-exact matches, computing an approximate result, and implements a dynamic
substitution of services, especially useful in highly unpredictable frameworks.
The proposed framework has been implemented and tested in an ubiquitous
computing environment.

Future research aims to refine the proposed architecture with optimizations
able to cope with both restricted storage availability and computational capabili-

14

ties of mobile devices. Furthermore a complex framework –integrating semantic-
based Service Discovery infrastructures for MANETs devised in [11]– will be
built and tested in order to allow an integration of decentralized discovery and
composition algorithms with semantic-enhanced discovery protocols. The port-
ing of the system under SQLite [12] will enable to embed proposed orchestra-
tion features in general purpose pervasive architectures involving technologies as
RFID, Bluetooth, 802.11.

Acknowledgments

We wish to acknowledge support of EU FP-6 IST STREP TOWL project “Time-
determined ontology based information system for real time stock market analy-
sis”.

References

1. Apache Software Foundation: jUDDI. (http://ws.apache.org/juddi/)
2. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F., Colucci, S., Colasuonno,

F.: Fully Automated Web Services Discovery and Composition through Concept
Covering and Concept Abduction. International Journal of Web Services Research
(JWSR) 4(3) (2007) Scheduled To appear.

3. OWL-S: Semantic Markup for Web Services: (http://www.daml.org/services/owl-
s/1.1/overview/)

4. Oracle Corporation: Oracle Database Lite 10g R2 - Feature Overview. (2006)
5. Chen, H., Joshi, A., Finin, T.: Dynamic Service Discovery for Mobile Computing:

Intelligent Agents MeetJini in the Aether. Cluster Computing 4(4) (2001) 343–354
6. Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic-enhanced bluetooth

discovery protocol for m-commerce applications. International Journal of Web and
Grid Services 2(4) (2006) 424–452

7. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. Cambridge University Press (2002)

8. De Antonellis, V., Melchiori, M., Pernici, B., Plebani, P.: A Methodology for e-
Service Substitutability in a Virtual District Environment. In: CAiSE ’03. LNCS,
Springer (2003) 552–567

9. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In: TES. Lecture Notes in Computer Science, Springer (2004) 15–28

10. Mecella, M., Pernici, B., Craca, P.: Compatibility of e-services in a Coopera-
tive Multi-platform Environment. In: TES. Lecture Notes in Computer Science,
Springer (2001) 44–57

11. Ruta, M., Di Noia, T., Di Sciascio, E., Donini, F.: Semantic-Enhanced Bluetooth
Discovery Protocol for M-Commerce Applications. International Journal of Web
and Grid Services 2(4) (2006) 424–452

12. SQLite: Distinctive features of SQLite. http://www.sqlite.org/different.html
(2006)

